Investigate the Performance of 240 GHz Millimeter: Wave Frequency over Fiber with 10 and 20 Gbps

  • Fawziya Al WahaibiEmail author
  • Hamed Al Raweshidy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1129)


In this work, a new approach is introduced to generate 240 GHz millimeter-wave signals using dual Parallel Mach-Zehnder modulators only. 216 GHz, 240 Ghz, 264 GHz and 288 GHz can be generated by tuning the input frequency of local oscillator to 18 Ghz, 20 GHz, 22 GHz and 24 GHz individually. By properly setting of the MZM biasing point, RF LO frequencies and phases shift, eighths order optical sidebands are generated with OSSR of 36.7 dB. At the photo detector 12 tupled frequencies are obtained with RFSSR of 30.01 dB. Further, the performance of generated 240 GHz is investigated by modulated the generated signals with baseband signal of 10 Gbps and 20 Gbps by using electro Absorption modulator. The max Q factor of different transmission distance is measured and analyzed.


Upper band of millimeter-wave Dual parallel Mach-Zehnder modulators (DP-MZM) Optical sideband suppression ratio Frequency 12-tupling Millimeter wave (mm-wave) Single mode fiber (SMF) 


  1. 1.
    Thomas, V.A., El-Hajjar, M., Hanzo, L.: Millimeter-wave radio over fiber optical upconversion techniques relying on link nonlinearity. IEEE Commun. Surv. Tutor. 18(1), 29–53 (2016)CrossRefGoogle Scholar
  2. 2.
    Song, H.J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011)CrossRefGoogle Scholar
  3. 3.
    Martin, K.: Terahertz Communications: A 2020 Vision, vol. 35, pp. 325–338. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Seeds, A.J., Shams, H., Fice, M.J., Renaud, C.C.: TeraHertz photonics for wireless communications. J. Light. Technol. 33(3), 579–587 (2015)CrossRefGoogle Scholar
  5. 5.
    Boulogeorgos, A.A.A., Papasotiriou, E.N., Kokkoniemi, J., Lehtomaeki, J., Alexiou, A., Juntti, M.: Performance evaluation of THz wireless systems operating in 275–400 GHz band. In: IEEE Vehicular Technology Conference, vol. 2018-June, pp. 1–5 (2018)Google Scholar
  6. 6.
    Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), 111101 (2010)CrossRefGoogle Scholar
  7. 7.
    Beas, J., Castanon, G., Aldaya, I., Aragon-Zavala, A., Campuzano, G.: Millimeter-wave frequency radio over fiber systems: a survey. IEEE Commun. Surv. Tutor. 15(4), 1593–1619 (2013)CrossRefGoogle Scholar
  8. 8.
    Giotas, T.: Optical Generation and Distribution of a Wide-Band Tunable Millimeter-Wave Signal With an Optical External Modulation Technique_and Mach Zehnder_Proof_Pages_27, vol. 53, no. 10, pp. 3090–3097 (2018)Google Scholar
  9. 9.
    Yu, J., et al.: Optical Millimeter-Wave Generation or Up-Conversion Using, vol. 18, no. 1, pp. 2005–2007 (2006)Google Scholar
  10. 10.
    Yang, A., Gu, W., Yu, S., Wang, C., Jiang, T.: A frequency quadrupling optical mm-wave generation for hybrid fiber-wireless systems. IEEE J. Sel. Areas Commun. 31(12), 797–803 (2014)Google Scholar
  11. 11.
    Lin, C.T., Shih, P.T., Chen, J., Xue, W.Q., Peng, P.C., Chi, S.: Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering. IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008)CrossRefGoogle Scholar
  12. 12.
    Mohamed, M., Zhang, X., Hraimel, B., Wu, K.: Frequency sixupler for millimeter-wave over fiber systems. Opt. Express 16(14), 10141 (2008)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Pei, L., Li, J., Li, Y.: Millimeter-wave signal generation with tunable frequency multiplication factor by employing UFBG-based acousto-optic tunable filter. IEEE Photonics J. 9(1), 1–10 (2017)Google Scholar
  14. 14.
    Eissa, M.H., Malignaggi, A., Ko, M., Schmalz, K., Borngräber, J., Ulusoy, A.C., Kissinger, D.: A 216–256 GHz fully differential frequency multiplier-by-8 chain with 0 dBm output power. Int. J. Microwave Wirel. Technol. 10(5–6), 562–569 (2018)CrossRefGoogle Scholar
  15. 15.
    Zhu, Z., Zhao, S., Zheng, W., Wang, W., Lin, B.: Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators. Appl. Opt. 54(32), 9432 (2015)CrossRefGoogle Scholar
  16. 16.
    Chen, X., Xia, L., Huang, D.: Optical generation of 12-tupling millimeter-wave signal without optical filtering. J. Opt. Commun. 37(3), 295–299 (2016)CrossRefGoogle Scholar
  17. 17.
    Wang, D., Tang, X., Xi, L., Zhang, X., Fan, Y.: A filterless scheme of generating frequency 16-tupling millimeter-wave based on only two MZMs. Opt. Laser Technol. 116, 7–12 (2019)CrossRefGoogle Scholar
  18. 18.
    Chen, H., Ning, T., Li, J., Pei, L., Zhang, C., Yuan, J.: Study on filterless frequency-tupling millimeter-wave generator with tunable optical carrier to sideband ratio. Opt. Commun. 350, 128–134 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Brunel University LondonLondonUK

Personalised recommendations