Systematization of Knowledge on Scalability Aspect of Blockchain Systems

  • Parth Anand ShuklaEmail author
  • Saeed Samet
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1129)


Blockchains has redefined the way software industry’s core mechanisms operate. Advent of blockchains have intrigued the industry and research community by the properties like immutability, reliability and availability it adheres. Since then, community has observed extensive research to make this technology viable and replace the existing computing paradigms. Blockchain technology promises global, immutable, self-governed system of records with no intermediaries. Technology with such properties have strong use cases where a secure audit trail is quintessential. But the performance of blockchains is not at par with the existing industry standards making industry reluctant to surge towards the blockchains. This paper presents a comprehensive analysis on the recent approaches used to enhance the performance of blockchain systems.


Blockchain Byzantine fault Consensus algorithms Cryptography Decentralized systems Distributed systems 


  1. 1.
    Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolić, M., Cocco, S.W., Yellick, J.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 30:1–30:15. ACM, New York (2018)Google Scholar
  2. 2.
    Berger, C., Reiser, H.P.: Scaling Byzantine consensus: a broad analysis. In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, pp. 13–18. ACM, New York (2018)Google Scholar
  3. 3.
    Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the Pinocchio zk-SNARK. In: Zohar, A., et al. (eds.) Financial Cryptography and Data Security. FC 2018. LNCS, vol. 10958. Springer, Heidelberg (2019)Google Scholar
  4. 4.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20, 398–461 (2002). Scholar
  5. 5.
    Dannen, C.: Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain Programming for Beginners. Apress, Berkeley (2017)CrossRefGoogle Scholar
  6. 6.
    Distler, T., Cachin, C., Kapitza, R.: Resource-efficient Byzantine fault tolerance. IEEE Trans. Comput. 65, 2807–2819 (2016). Scholar
  7. 7.
    Eberhardt, J., Heiss, J.: Off-chaining models and approaches to off-chain computations. In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, pp. 7–12. ACM, New York (2018)Google Scholar
  8. 8.
    Eberhardt, J., Tai, S.: On or Off the blockchain? Insights on off-chaining computation and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) Service-Oriented and Cloud Computing, pp. 3–15. Springer (2017)Google Scholar
  9. 9.
    Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51–68. ACM, New York (2017)Google Scholar
  10. 10.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs That yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38, 690–728 (1991). Scholar
  11. 11.
    Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Technical report 2016–1.10. Zerocoin Electric Coin Company (2016)Google Scholar
  12. 12.
    Kapitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mohammadi, S.V., Schröder-Preikschat, W., Stengel, K.: CheapBFT: resource-efficient byzantine fault tolerance. In: Proceedings of the 7th ACM European Conference on Computer Systems, pp. 295–308. ACM, New York (2012)Google Scholar
  13. 13.
    Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative Byzantine fault tolerance. In: Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, pp. 45–58. ACM, New York (2007)Google Scholar
  14. 14.
    Li, P., Wang, G., Chen, X., Xu, W.: Gosig: scalable byzantine consensus on adversarial wide area network for blockchains. arXiv:1802.01315 (2018)
  15. 15.
    Li, W., Sforzin, A., Fedorov, S., Karame, G.O.: Towards scalable and private industrial blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pp. 9–14. ACM, New York (2017)Google Scholar
  16. 16.
    Liu, J., Li, W., Karame, G.O., Asokan, N.: Scalable Byzantine consensus via hardware-assisted secret sharing. IEEE Trans. Comput. 68, 139–151 (2019). Scholar
  17. 17.
    Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pp. 120–130. IEEE Comput. Soc., New York (1999)Google Scholar
  18. 18.
    Nakamoto, S.: Bitcoin A Peer-to-Peer Electronic Cash System (2008)Google Scholar
  19. 19.
    Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4, 161–174 (1991). Scholar
  20. 20.
    Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Jovanovic, P., Gasser, L., Gailly, N., Khoffi, I., Ford, B.: Keeping authorities “honest or bust” with decentralized witness cosigning. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 526–545 (2016)Google Scholar
  21. 21.
    Yang, Y.: LinBFT: linear-communication byzantine fault tolerance for public blockchains (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WindsorWindsorCanada

Personalised recommendations