Hardware-Software Implementation of a McEliece Cryptosystem for Post-quantum Cryptography

  • Mariano López-GarcíaEmail author
  • Enrique Cantó-Navarro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1130)


This paper shows the implementation on FPGA of a McEliece cryptosystem, which ensures the security recommendations given by the European Telecommunications Standards Institute (ETSI) for next generation of quantum-resistant cryptosystems. The proposed implementation provides more than 128 bits of quantum security using a public key of 2,097,152 bytes. The proposed system is based on a hardware/software implementation that uses an ARM Cortex-A53 core connected to a coprocessor through an AX14 lite interface. The complete system was implemented on a Xilinx Zynq UltraScale+ and it is able to decipher texts of 8192 bit-length is 47.39 ms.


McEliece Post-quantum crytography FPGA Hardware/software co-design Embedded devices 



This work was supported by the Ministerio de Economía y Competitividad in the framework of the Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, project TEC2015-68784-R.


  1. 1.
    McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DNS progress report 43.44 (1978)Google Scholar
  2. 2.
    Berlekamp, E.R., McEliece, R.J.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    ETSI – European Telecommunications Standards Institute: Quantum Safe Cryptography (QSC); Quantum-safe algorithmic framework. ETSI GR QSC 001 v1.1.1 (2016)Google Scholar
  4. 4.
    National Institute of Standards and Technology: Report on Post-Quantum Cryptography. Internal report 8105 (2016).
  5. 5.
    Augot, D., et al.: Initial recommendations of long-term secure post-quantum systems. Horizon 2020 ICT-645622. Revision 1 (2015)Google Scholar
  6. 6.
    Berson, T.: Failure of the McEliece public-key cryptosystem under message-resend and related-message attack, pp. 213–220. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Engelbert, D., Overbeck, R., Schmidt, A.: A summary of McEliece-type cryptosystems and their security.
  8. 8.
    Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: International Sorkshop on Post-Quantum Cryptography, pp 31–46 (2008)Google Scholar
  9. 9.
    Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for embedded devices. In: International Conference on Cryptographic Hardware and Embedded Systems - CHES (2009)Google Scholar
  10. 10.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC_MDPC McEliece encryption on reconfigurable devices. In: Design, Automation & Test in Europe Conference & Exhibition (DATE) (2014)Google Scholar
  12. 12.
    Ghosh, S., Delvaux, J., Uhsadel, L., Verbauwhede, I.: A speed area optimized embedded co-procesor for McEliece cryptosistem. In: IEEE 23rd International Conference on Application-Specific Systems, Architectures and Processors (2012)Google Scholar
  13. 13.
    Heyse, S.: Code-based cryptography: implementing the McElice scheme on reconfigurable hardware. Master thesis, Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum (2009)Google Scholar
  14. 14.
  15. 15.
    Quantum-resistant cryptography. Oriol Farràs. Technical report (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mariano López-García
    • 1
    Email author
  • Enrique Cantó-Navarro
    • 2
  1. 1.Universitat Politècnica de CatalunyaVilanova I la GeltrúSpain
  2. 2.Universidad Rovira i VirgiliTarragonaSpain

Personalised recommendations