Advertisement

High Voltage Insulation Systems

  • Omid Beik
  • Ahmad S. Al-Adsani
Chapter
  • 19 Downloads

Abstract

This chapter discusses insulation system design for the HG windings suitable for a 38.1 kV RMS phase voltage machine. The machine initial phase 6.35 kV voltage is scaled in steps to obtain the targeted 38.1 kV and appropriate winding insulations for each design step is considered. Various industry practices for the HV windings are introduced, and insulation systems for different parts of a winding, that is, turn, strand, and ground insulations, are addressed in this chapter. Semiconductor and stress grading insulations are also investigated. The voltage stress between different insulations and the grounded machine core is modeled using lumped capacitors to illustrate the voltage withstand strength of the insulations.

Keywords

Generator winding Grounding High-voltage coils Insulation system Voltage stress 

?References

  1. 1.
    [Online] Brazos on-shore wind farm, Texas, US. Available: https://en.wikipedia.org/wiki/Brazos_Wind_Farm
  2. 2.
    [Online] Walney Off-shore Windfarms. Available: http://www.dongenergy.com/
  3. 3.
    [Online] Alstom wind turbines. Available: http://alstomenergy.gepower.com/
  4. 4.
    E. Hau, Wind Turbines: Fundamentals, Technologies, Application, Economics (Springer, Berlin, 2006)Google Scholar
  5. 5.
    [Online] Siemens wind turbine SWT-3.6-107. Available: http://www.siemens.com
  6. 6.
    [Online] Enercon E-82 wind turbine. Available: http://www.enercon.de
  7. 7.
    S.V. Bozhko, R. Blasco-Gimenez, R. Li, J.C. Clare, Control of offshore DFIG-based wind farm grid with line-commutated HVDC connection. IEEE Trans. Energy Convers. 22(1), 71–78 (2007)Google Scholar
  8. 8.
    H. Liu, J. Sun, Voltage stability and control of offshore wind farms with AC collection and HVDC transmission. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 1181–1189 (2014)Google Scholar
  9. 9.
    D. Yoon, H. Song, G. Jang, S. Joo, Smart operation of HVDC systems for large penetration of wind energy resources. IEEE Trans. Smart Grid 4(1), 359–366 (2013)Google Scholar
  10. 10.
    E. Selvaraj, C.P. Sugumaran, M.R. Krishnamoorthi, M.R. Kumar, J. Joshi, S. Ganesan, S. Geethadevi, D. Kumar, A review on fundamentals of HVDC transmission. J. Club Electr. Eng. (JCEE) 1, 12–17 (2014)Google Scholar
  11. 11.
    R. Feldman, M. Tomasini, E. Amankwah, J.C. Clare, P.W. Wheeler, D.R. Trainer, R.S. Whitehouse, A hybrid modular multilevel voltage source converter for HVDC power transmission. IEEE Trans. Ind. Appl. 49(4), 1577–1588 (2013)Google Scholar
  12. 12.
    J.A. Baroudi, V. Dinavahi, A.M. Knight, A review of power converter topologies for wind generators. Renew. Energy 32, 2369–2385 (2007)Google Scholar
  13. 13.
    O. Anaya-Lara, N. Jenkins, J. Ekanayake, P. Cartwright, M. Hughes, Wind Energy Generation: Modelling and Control (Wiley, West Sussex, 2009)Google Scholar
  14. 14.
    D. Jovcic, N. Strachan, Offshore wind farm with centralised power conversion and DC interconnection. IET Gener. Transm. Distrib. 3(6), 586–595 (2009)Google Scholar
  15. 15.
    E. Veilleux, P.W. Lehn, Interconnection of direct-drive wind turbines using a series-connected DC grid. IEEE Trans. Sustain. Energy 5(1), 139–147 (2014)Google Scholar
  16. 16.
    M. Dahlgren, H. Frank, M. Leijon, F. Owman, L. Walfridsson, “Windformer”. ABB review. Tech Rep. 3, 31–37 (2000)Google Scholar
  17. 17.
    S.M. Muyeen, R. Takahashi, J. Tamura, Operation and control of HVDC-connected offshore wind farm. IEEE Trans. Sustain. Energy 1(1), 30–37 (2010)Google Scholar
  18. 18.
    C. Zhan, C. Smith, A. Crane, A. Bullock, D. Grieve, DC transmission and distribution system for a large offshore wind farm. 9th IET international conference AC and DC power transmission, pp. 1–5, 19–21 Oct 2010Google Scholar
  19. 19.
    S.D. Wright, A.L. Rogers, J.F. Manwell, A. Ellis, Transmission options for offshore wind farms in the United States. Proceedings of the American Wind Energy Association annual conference, pp. 1–12, 2002Google Scholar
  20. 20.
    V.G. Agelidis, G.D. Demetriades, N. Flourentzou, Recent advances in high-voltage direct-current power transmission systems. IEEE international conference on industrial technology (ICIT) 2006, pp. 206–213, 15–17 Dec 2006Google Scholar
  21. 21.
    P. Bresesti, W.L. Kling, R.L. Hendriks, R. Vailati, HVDC connection of offshore wind farms to the transmission system. IEEE Trans. Energy Convers. 22(1), 37–43 (2007)Google Scholar
  22. 22.
    C. Meyer, M. Hoing, A. Peterson, R.W. De Doncker, Control and design of DC grids for offshore wind farms. IEEE Trans. Ind. Appl. 43(6), 1475–1482 (2007)Google Scholar
  23. 23.
    R. Steigerwald, R. Tompkins, A comparison of high-frequency link schemes for interfacing a DC source to a utility grid, IEEE IAS annual meeting, pp. 759–766, 1982Google Scholar
  24. 24.
    R.W. De Doncker, D.M. Divan, M.H. Kheraluwala, A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27(1), 63–73 (1991)Google Scholar
  25. 25.
    D. Jovcic, Bidirectional, high-power DC transformer. Trans. Power Deliv. 24(4), 2276–2283 (2009)Google Scholar
  26. 26.
    D. Jovcic, L. Zhang, LCL DC/DC Converter for DC Grids. IEEE Trans. Power Deliv. 28(4), 2071–2079 (2013)Google Scholar
  27. 27.
    C. Meyer, R.W. De Doncker, Design of a three-phase series resonant converter for offshore DC grids. IEEE industry applications conference, 42nd IAS annual meeting, pp. 216–223, 23–27 Sept 2007Google Scholar
  28. 28.
    L. Max, T. Thiringer, Control method and snubber selection for a 5 MW wind turbine single active bridge DC/DC converter. European conference on power electronics and applications, pp. 1–10, 2–5 Sept 2007Google Scholar
  29. 29.
    W. Chen, A.Q. Huang, C. Li, G. Wang, W. Gu, Analysis and comparison of medium voltage high power DC/DC converters for offshore wind energy systems. IEEE Trans. Power Electron. 28(4), 2014–2023 (2013)Google Scholar
  30. 30.
    M. Hajian, J. Robinson, D. Jovcic, B. Wu, 30 kW, 200 V/900 V, Thyristor LCL DC/DC converter laboratory prototype design and testing. IEEE Trans. Power Electron. 29(3), 1094–1102 (2014)Google Scholar
  31. 31.
    N. Denniston, A.M. Massoud, S. Ahmed, P.N. Enjeti, Multiple-module high-gain high-voltage DC–DC transformers for offshore wind energy systems. IEEE Trans. Ind. Electron. 58(5), 1877–1886 (2011)Google Scholar
  32. 32.
    G. Ortiz, J. Biela, D. Bortis, J.W. Kolar, 1 Megawatt, 20 kHz, isolated, bidirectional 12kV to 1.2kV DC-DC converter for renewable energy applications. International power electronics conference (IPEC), pp. 3212–3219, 21–24 June 2010Google Scholar
  33. 33.
    K.T. Chau, Y.B. Li, J.Z. Jiang, S. Niu, Design and control of a PM brushless hybrid generator for wind power application. IEEE Trans. Magn. 42(10), 3497–3499 (2006)Google Scholar
  34. 34.
    C. Liu, K.T. Chau, J.Z. Jiang, L. Jian, Design of a new outer-rotor permanent magnet hybrid machine for wind power generation. IEEE Trans. Magn. 44(6), 1494–1497 (2008)Google Scholar
  35. 35.
    R. Pillai, S. Narayanan, G. Swindale, Benefits and challenges of a grid coupled wound rotor synchronous generator in a wind turbine application. Technical information from Cummins generator technologies, Issue number: WP102Google Scholar
  36. 36.
    I.D. Margaris, N.D. Hatziargyriou, Direct drive synchronous generator wind turbine models for power system studies. 7th Mediterranean conference and exhibition on power generation, transmission, distribution and energy conversion, pp. 1–7, 7–10 Nov 2010Google Scholar
  37. 37.
    S. Achilles, M. Poller, Direct drive synchronous machine models for stability assessment of wind farms. Fourth international workshop on large scale integration of wind power and transmission networks for offshore windfarms, Billund, 2003Google Scholar
  38. 38.
    M.R. Behnke, E. Muljadi, Reduced order dynamic model for variable-speed wind turbine with synchronous generator and full power conversion topology. International conference on future power systems, Nov 2005Google Scholar
  39. 39.
    E. Spooner, P. Gordon, J.R. Bumby, C.D. French, Lightweight ironless-stator PM generators for direct-drive wind turbines. IEE Proc. Electric Power Appl. 152(1), 17–26 (2005)Google Scholar
  40. 40.
    S. Brisset, D. Vizireanu, P. Brochet, Design and optimization of a nine-phase axial-flux PM synchronous generator with concentrated winding for direct-drive wind turbine. IEEE Trans. Ind. Appl. 44(3), 707–715 (2008)Google Scholar
  41. 41.
    H. Li, Z. Chen, Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2(2), 123–138 (2008)Google Scholar
  42. 42.
    D.J. Bang, H. Polinder, G. Shrestha, J.A. Ferreira, Review of generator systems for direct-drive wind turbines. Eur. Wind Energy Conf. Exhib., Belgium, Mar 31–Apr 3 2008Google Scholar
  43. 43.
    H. Polinder, F. van der Pijl, G. de Vilder, P.J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy Convers. 21(3), 725–733 (2006)Google Scholar
  44. 44.
    M. Liserre, R. Cardenas, M. Molinas, J. Rodriguez, Overview of multi-MW wind turbines and wind parks. IEEE Trans. Ind. Electron. 58(4), 1081–1095 (2011)Google Scholar
  45. 45.
    [Online] DeWind D8.2 2000 kW wind turbine. Available: http://www.dewindco.com
  46. 46.
    A. Betz, Wind-Energie und ihre Ausnutzung durch Windmühlen (Wind energy and its utilization through windmills), Öko-Buchverlag Kassel, 1982Google Scholar
  47. 47.
    S. Heier, Grid Integration of Wind Energy Conversion Systems (Wiley, New York, 1998)Google Scholar
  48. 48.
    Z. Lubosny, Wind Turbine Operation in Electric Power Systems (Springer, New York, 2003)Google Scholar
  49. 49.
    O. Wasynczuk, D.T. Man, J.P. Sullivan, Dynamic behavior of a class of wind turbine generators during random wind fluctuations. IEEE Power Eng. Rev. PER-1(6), 47–48 (1981)Google Scholar
  50. 50.
    P.M. Anderson, A. Bose, Stability simulation of wind turbine systems. IEEE Trans Power Appar. Syst. PAS-102(12), 3791–3795 (1983)Google Scholar
  51. 51.
    Department of Energy, NASA, The Mod-2 Wind Turbine Development Project. Report No. DOE/NASA/20305–5 NASA TM-82681, July 1981Google Scholar
  52. 52.
    B. Amlang, D. Arsurdis, W. Leonhard, W. Vollstedt, K. Wefelmeier, Elektrische Energieversorgung mit Windkraftanlagen Abschlußbericht BMFT-Forschungsvorhaben 032–8265-B, Braunschweig, 1992Google Scholar
  53. 53.
    V. Quaschning, Understanding Renewable Energy Systems (Earthscan, London, 2005)Google Scholar
  54. 54.
    G. Bywaters, V. John, J. Lynch, P. Mattila, G. Norton, J. Stowell, M. Salata, O. Labath, A. Chertok, D. Hablanian, Northern Power Systems WindPACT drive train alternative design study report. NREL, Golden, CO, Rep. Number NREL/SR-500-35524, 2004Google Scholar
  55. 55.
  56. 56.
    D. Jovcic, Step-up DC–DC converter for megawatt size applications. IET Power Electron. 2(6), 675–685 (2009)Google Scholar
  57. 57.
    D. Jovcic, High gain DC transformer. U.K. Patent office, PCT Patent application no. GB 0724369.4, Dec 2007Google Scholar
  58. 58.
    R. Datta, V.T. Ranganathan, Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. IEEE Trans. Energy Convers. 17(3), 414–421 (2002)Google Scholar
  59. 59.
    [Online] Alstom Haliade 150–6MW wind turbines. Available: http://alstomenergy.gepower.com/
  60. 60.
    T. Surinkaew, I. Ngamroo, Coordinated robust control of DFIG wind turbine and PSS for stabilization of power oscillations considering system uncertainties. IEEE Trans Sustain. Energy 5(3), 823–833 (2014)Google Scholar
  61. 61.
    A.D. Hansena, P. Sørensena, F. Iovb, F. Blaabjerg, Centralised power control of wind farm with doubly fed induction generators. Renew. Energy 31(2), 935–951 (2006)Google Scholar
  62. 62.
    L.M. Fernandez, C.A. Garcia, F. Juradob, Comparative study on the performance of control systems for doubly fed induction generator (DGIG) wind turbines operating with power regulation. Energy 33(2), 1438–1452 (2008)Google Scholar
  63. 63.
    W. Lu, B.T. Ooi, Multi-terminal LVDC system for optimal acquisition of power in wind-farm using induction generators. IEEE Trans. Power Electron. 17(4), 558–563 (2002)Google Scholar
  64. 64.
    W. Lu, B.T. Ooi, Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC. IEEE Trans. Power Deliv. 18(1), 201–206 (2003)Google Scholar
  65. 65.
    N. Schofield, Electric machine design and operation. Ph.D. and M.Sc. lecture notes, Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada, 2015Google Scholar
  66. 66.
    S.J. Sugimoto, Current status and recent topics of rare-earth permanent magnets. J. Phys. D. Appl. Phys. 44(6), 064001 (2011)Google Scholar
  67. 67.
    M. Humphries, Rare earth elements: the global supply chain. CRS Report for Congress, Report No. R41347, Congressional Research Service, 2013Google Scholar
  68. 68.
    C. Hurst, China’s Rare Earth Elements Industry: What Can the West Learn? (Institute for the Analysis of Global Security (IAGS), Washington, DC, 2010)Google Scholar
  69. 69.
    [Online] Arnold Magnetics permanent magnets datasheet. Available: http://www.arnoldmagnetics.com/en-us/
  70. 70.
    D. Ishak, A.Q. Zhu, D. Howe, Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole. IEEE Trans. Magn. 41(9), 2462–2469 (2005)Google Scholar
  71. 71.
    A. Boglietti, A. Cavagnino, M. Lazzari, M. Pastorelli, Two simplified methods for the iron losses prediction in soft magnetic materials supplied by PWM inverter. IEEE international on electric machines and drives conference (IEMDC 2001), pp. 391–395, 2001Google Scholar
  72. 72.
    A. Krings, J. Soulard, Overview and comparison of Iron loss models for electrical machines. J. Electr. Eng. 10(3), 162–169 (2010)Google Scholar
  73. 73.
    W.A. Roshen, A practical, accurate and very general Core loss model for nonsinusoidal waveforms. IEEE Trans. Power Electron. 22, 30–40 (2007)Google Scholar
  74. 74.
    C.P. Steinmetz, On the law of hysteresis. Proc. AIEEE 72, 197–221 (1884)Google Scholar
  75. 75.
    Lamination Steel Third Edition CD-ROM, Electric Motor Education and Research Foundation, ISBN 0–9714391–3-3, Second Printing 2009Google Scholar
  76. 76.
    B.J. Moore, R.H. Rehder, R.E. Draper, Utilizing reduced build concepts in the development of insulation systems for large motors, in Proceedings of IEEE Electrical Insulation Conference, (Cincinnati, 1999, Oct), pp. 347–352Google Scholar
  77. 77.
    G.C. Stone, E.A. Boulter, I. Culbert, H. Dhirani, Electrical Insulation for Rotating Machines (IEEE Press, New York, 2004), p. 5Google Scholar
  78. 78.
    [Online] Partzsch Group. Available: https://en.partzsch.de/roebel-bars
  79. 79.
    M. Leijon, ABB Powerformer. Report No: ABB Review 2/1998Google Scholar
  80. 80.
    X. Yu, W. Wu, W. Pan, S. Han, L. Wang, J. Wei, L. Liu, S. Du, Z. Zhou, A. Foussat, P. Libeyre, Development of insulation technology with vacuum-pressure-impregnation (VPI) for ITER correction coil. IEEE Trans. Appl. Supercond. 22(3), 7700504–7700504 (2012)Google Scholar
  81. 81.
    M.K.W. Stranges, D.A. Snopek, A.K. Younsi, J.H. Dymond, Effect of surge testing on unimpregnated ground insulation of VPI stator coils. IEEE Trans. Ind. Appl. 38(5), 1460–1465 (2002)Google Scholar
  82. 82.
    W. Grubelnik, C. Stiefmaier, Un-impregnated vpi tape testing and effects on dielectric performance of VPI insulation systems. Electrical insulation conference (EIC), pp. 359–362, 8–11 June 2014Google Scholar
  83. 83.
    A. Nakayama, H. Haga, M. Muraoka, Development of generator stator coil with 22kV global VPI insulation. Conference on electrical insulation and dielectric phenomena (CEIDP ‘04), pp. 224–227, 17–20 Oct 2004Google Scholar
  84. 84.
    F.P. Espino-Cortes, E.A. Cherney, S. Jayaram, Effectiveness of stress grading coatings on form wound stator coil groundwall insulation under fast rise time pulse voltages. IEEE Trans. Energy Convers. 20(4), 844–851 (2005)Google Scholar
  85. 85.
    D. J. Conley, N. Frost, Fundamentals of semi-conductive systems for high voltage stress grading. Electrical insulation conference and electrical manufacturing expo, pp. 89–92, 26–26 Oct 2005Google Scholar
  86. 86.
    Private conversation with Dr. Yali (Natalie) Feng, HV insulation expert at Sulzer Dowding & Mills, Birmingham, UK, 2014Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Omid Beik
    • 1
  • Ahmad S. Al-Adsani
    • 2
  1. 1.Department of Electrical and Computer EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Electrical Engineering TechnologyCollege of Technological Studies (CTS), Public Authority for Applied Education and Training (PAAET)Kuwait CityKuwait

Personalised recommendations