Polaritons in External Fields

  • Arash Rahimi-ImanEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 229)


External fields such as magnetic or electric fields are widely used to manipulate and control quantum emitters in semiconductor structures based on their magnetic or electronic response. Since coupling of the light field to an emitter is governed by a few factors, such as resonance conditions, the oscillator strength of electric dipoles, and selection rules, external fields with their effects on the spatial wave-function overlap, the dipole orientation, spin degeneracy or resonance energies directly affect light–matter interaction. Some properties can be for instance electrically manipulated through band structure tilts and fields using tunable external bias, whereas the magnetic moment and spin properties of excitations in matter can be addressed with variable magnetic fields. Typically, static fields are employed, whereas transient fields can be used as a tool for additional control of the quantum state on ultrafast time scales. Many examples of polariton experiments clearly show that the rich polariton physics in optical microcavities can be further studied when exposing the exciton–polaritons to external fields. Prominent effects of external fields on excitons and, consequently, on polaritons will be summarized in the following.


  1. 1.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, New York, 1991)Google Scholar
  2. 2.
    J.H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, 1998)Google Scholar
  3. 3.
    C.F. Klingshirn, Semiconductor Optics (Springer, Berlin, 2012)CrossRefGoogle Scholar
  4. 4.
    C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, A. Forchel, Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Opt. Express 16, 15006–15012 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    P.W. Fry, I.E. Itskevich, D.J. Mowbray, M.S. Skolnick, J.J. Finley, J.A. Barker, E.P. O’Reilly, L.R. Wilson, I.A. Larkin, P.A. Maksym, M. Hopkinson, M. Al-Khafaji, J.P.R. David, A.G. Cullis, G. Hill, J.C. Clark, Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys. Rev. Lett. 84(4), 733–736 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    I. D’Amico, F. Rossi, Field-induced coulomb coupling in semiconductor macroatoms: application to single-electron quantum devices. Appl. Phys. Lett. 79(11), 1676–1678 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, J. Bloch, Optical Bistability in a GaAs-Based Polariton Diode. Phys. Rev. Lett. 101(26), 266402 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M. Amthor, S. Weißenseel, J. Fischer, M. Kamp, C. Schneider, S. Höfling, Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Opt. Express 22(25), 31146–31153 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38(2), 89–188 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652–654 (1937)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A.M. Andrews, S. Schartner, G. Strasser, M. Helm, Observation of the intraexciton Autler-Townes effect in \({\rm GaAs}/{\rm AlGaAs}\) semiconductor quantum wells. Phys. Rev. Lett. 105(16), 167401 (2010)Google Scholar
  12. 12.
    M.J. Drexler, R. Woscholski, S. Lippert, W. Stolz, A. Rahimi-Iman, M. Koch, Disturbing the coherent dynamics of an excitonic polarization with strong terahertz fields. Phys. Rev. B 90(19), 195304 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    R. Idrissi Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J.D. Ganière, J.L. Staehli, V. Savona, B. Deveaud, Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74(15), 155311– (2006)Google Scholar
  14. 14.
    D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100(4), 047401 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84(16), 165325 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Y.G. Rubo, A.V. Kavokin, I.A. Shelykh, Suppression of superfluidity of exciton-polaritons by magnetic field. Phys. Lett. A 358(3), 227–230 (2006)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    A.V. Larionov, V.D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, A. Forchel, Polarized nonequilibrium Bose–Einstein condensates of spinor exciton polaritons in a magnetic field. Phys. Rev. Lett. 105(25), 256401 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P. Walker, T.C.H. Liew, D. Sarkar, M. Durska, A.P.D. Love, M.S. Skolnick, J.S. Roberts, I.A. Shelykh, A.V. Kavokin, D.N. Krizhanovskii, Suppression of Zeeman splitting of the energy levels of exciton-polariton condensates in semiconductor microcavities in an external magnetic field. Phys. Rev. Lett. 106(25), 257401– (2011)Google Scholar
  19. 19.
    V.D. Kulakovskii, A.S. Brichkin, S.V. Novikov, C. Schneider, S. Höfling, M. Kamp, A. Forchel, N.A. Gippius, Magnetic field control of polarized polariton condensates in rectangular microcavity pillars. Phys. Rev. B 85(15), 155322 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Höfling, An electrically pumped polariton laser. Nature 497, 348 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    K.J. Nash, M.S. Skolnick, P.A. Claxton, J.S. Roberts, Diamagnetism as a probe of exciton localization in quantum wells. Phys. Rev. B 39(15), 10943– (1989)ADSCrossRefGoogle Scholar
  22. 22.
    S.N. Walck, T.L. Reinecke, Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B 57(15), 9088– (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Th. Wimbauer, K. Oettinger, Al.L. Efros, B.K. Meyer, H. Brugger, Zeeman splitting of the excitonic recombination in \({{\rm In}_{\rm x}}{{\rm Ga}_{1-\text{x}}}\)As/GaAs single quantum wells. Phys. Rev. B 50(12), 8889– (1994)ADSCrossRefGoogle Scholar
  24. 24.
    T.A. Fisher, A.M. Afshar, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field. Phys. Rev. B 53(16), R10469 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    A. Armitage, T.A. Fisher, M.S. Skolnick, D.M. Whittaker, P. Kinsler, J.S. Roberts, Exciton polaritons in semiconductor quantum microcavities in a high magnetic field. Phys. Rev. B 55(24), 16395 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)CrossRefGoogle Scholar
  27. 27.
    R.L. Greene, K.K. Bajaj, Binding energies of Wannier excitons in GaAs-Ga1-xAlxAs quantum-well structures in a magnetic field. Phys. Rev. B 31(10), 6498– (1985)ADSCrossRefGoogle Scholar
  28. 28.
    J. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdré, U. Oesterle, R.P. Stanley, From Fermi’s golden rule to the vacuum rabi splitting: magnetopolaritons in a semiconductor optical microcavity. Phys. Rev. Lett. 74(20), 3967– (1995)ADSCrossRefGoogle Scholar
  29. 29.
    D. Whittaker, T. Fisher, A. Afshar, M. Skolnick, P. Kinsler, J. Roberts, G. Hill, M. Pate, Vacuum rabi splitting in semiconductor microcavities with applied electric and magnetic fields. Il Nuovo Cimento D 17(11), 1781–1786 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    T. Tanaka, Z. Zhang, M. Nishioka, Y. Arakawa, Magnetic field dependence of exciton oscillator strength by measurements of magnetoexciton-polariton mode splitting in quantum wells with a microcavity. Appl. Phys. Lett. 69(7), 887–889 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Berger, O. Lyngnes, H.M. Gibbs, G. Khitrova, T.R. Nelson, E.K. Lindmark, A.V. Kavokin, M.A. Kaliteevski, V.V. Zapasskii, Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: the strong coupling threshold. Phys. Rev. B 54(3), 1975 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, A. Forchel, Control of the strong light-matter interaction between an elongated In\(_{0.3}\)Ga\(_{0.7}\)As quantum dot and a micropillar cavity using external magnetic fields. Phys. Rev. Lett. 103(12), 127401– (2009)Google Scholar
  33. 33.
    S. Reitzenstein, S. Münch, P. Franeck, A. Löffler, S. Höfling, L. Worschech, A. Forchel, I.V. Ponomarev, T.L. Reinecke, Exciton spin state mediated photon-photon coupling in a strongly coupled quantum dot microcavity system. Phys. Rev. B 82(12), 121306(R) (2010)Google Scholar
  34. 34.
    A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, L. Worschech, S. Reitzenstein, S. Höfling, A. Forchel, M. Kamp, Magnetic-field interaction of spatially confined quantum-well exciton-polaritons. J. Phys. Conf. Ser. 456, 012033 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Rahimi-Iman, Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser (Cuvillier Verlag Göttingen, 2013)Google Scholar
  36. 36.
    J. Fischer, S. Brodbeck, A.V. Chernenko, I. Lederer, A. Rahimi-Iman, M. Amthor, V.D. Kulakovskii, L. Worschech, M. Kamp, M. Durnev, C. Schneider, A.V. Kavokin, S. Höfling, Anomalies of a nonequilibrium spinor polariton condensate in a magnetic field. Phys. Rev. Lett. 112, 093902 (2014)Google Scholar
  37. 37.
    B. Piȩtka, D. Zygmunt, M. Król, M.R. Molas, A.A.L. Nicolet, F. Morier-Genoud, J. Szczytko, J. Łusakowski, P. Ziȩba, I. Tralle, P. Stȩpnicki, M. Matuszewski, M. Potemski, B. Deveaud, Magnetic field tuning of exciton-polaritons in a semiconductor microcavity. Phys. Rev. B 91(7), 075309 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    A.V. Chernenko, A. Rahimi-lman, J. Fischer, M. Amthor, C. Schneider, S. Reitzenstein, A. Forchel, S. Höfling, Polariton condensate coherence in planar microcavities in a magnetic field. Semiconductors 50(12), 1609–1613 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    F. Tassone, Y. Yamamoto, Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59(16), 10830 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    V.E. Hartwell, D.W. Snoke, Numerical simulations of the polariton kinetic energy distribution in GaAs quantum-well microcavity structures. Phys. Rev. B 82, 075307 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    C. Sturm, D. Solnyshkov, O. Krebs, A. Lemaître, I. Sagnes, E. Galopin, A. Amo, G. Malpuech, J. Bloch, Nonequilibrium polariton condensate in a magnetic field. Phys. Rev. B 91(15), 155130 (2015)Google Scholar
  42. 42.
    J.L. Tomaino, A.D. Jameson, Y.-S. Lee, G. Khitrova, H.M. Gibbs, A.C. Klettke, M. Kira, S.W. Koch, Terahertz excitation of a coherent \(\Lambda \)-type three-level system of exciton-polariton modes in a quantum-well microcavity. Phys. Rev. Lett. 108(26), 267402 (2012)Google Scholar
  43. 43.
    J.M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, R. Huber, Revealing the dark side of a bright exciton-polariton condensate. Nat. Commun. 5, 4648 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    A.D. Jameson, J.L. Tomaino, Y.-S. Lee, G. Khitrova, H.M. Gibbs, C.N. Böttge, A.C. Klettke, M. Kira, S.W. Koch, Direct measurement of light-matter energy exchange inside a microcavity. Optica 1(5), 276 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    T.C.H. Liew, M.M. Glazov, K.V. Kavokin, I.A. Shelykh, M.A. Kaliteevski, A.V. Kavokin, Proposal for a Bosonic Cascade laser. Phys. Rev. Lett. 110(4), 047402 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    S. Huppert, O. Lafont, E. Baudin, J. Tignon, R. Ferreira, Terahertz emission from multiple-microcavity exciton-polariton lasers. Phys. Rev. B 90(24), 241302(R) (2014)ADSCrossRefGoogle Scholar
  47. 47.
    K.V. Kavokin, M.A. Kaliteevski, R.A. Abram, A.V. Kavokin, S. Sharkova, I.A. Shelykh, Stimulated emission of terahertz radiation by exciton-polariton lasers. Appl. Phys. Lett. 97(20), 201111–201113 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    I.G. Savenko, I.A. Shelykh, M.A. Kaliteevski, Nonlinear terahertz emission in semiconductor microcavities. Phys. Rev. Lett. 107(2), 027401 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    A.V. Kavokin, I.A. Shelykh, T. Taylor, M.M. Glazov, Vertical cavity surface emitting terahertz laser. Phys. Rev. Lett. 108(19), 197401 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    K. Kristinsson, O. Kyriienko, I.A. Shelykh, Terahertz laser based on dipolaritons. Phys. Rev. A 89(2), 023836 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    K. Rojan, Y. Léger, G. Morigi, M. Richard, A. Minguzzi, Enhanced second-order nonlinearity for THz generation by resonant interaction of exciton-polariton Rabi oscillations with optical phonons. Phys. Rev. Lett. 119(12), 127401 (2017)Google Scholar
  52. 52.
    B. Piȩtka, N. Bobrovska, D. Stephan, M. Teich, M. Król, S. Winnerl, A. Pashkin, R. Mirek, K. Lekenta, F. Morier-Genoud, H. Schneider, B. Deveaud, M. Helm, M. Matuszewski, J. Szczytko, Doubly dressed Bosons: exciton polaritons in a strong terahertz field. Phys. Rev. Lett. 119(7), 077403 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    R.A. Kaindl, M.A. Carnahan, D. Hägele, R. Lövenich, D.S. Chemla, Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 423(6941), 734–738 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physics DepartmentPhilipps-Universität MarburgMarburgGermany

Personalised recommendations