Optically-Excited Polariton Condensates

  • Arash Rahimi-ImanEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 229)


The observation of polariton condensation with the help of high-quality optical microcavities was a long sought goal in solid-state research. Optical pumping of planar microresonator structures consisting of multiple quantum wells as active region offers a common and direct path towards exciton–polariton studies. After obtaining spectral proof of polaritons in the linear regime, which describes the response at low-density excitation, the behaviour of a polariton gas at increased particle densities gets naturally into the focus, where stimulated scattering is expected to set in. The demonstration of a condensate is typically linked to signatures such as a macroscopic ground-state occupation, a change in the photon statistics and a spontaneous build-up of long-range order evidenced as spatial coherence. Indeed, to establish the link to BEC , all aspects must be carefully investigated. These topics are subject of this chapter, which concludes with examples of condensates at elevated temperature, polariton systems with special features and superfluidity studies on polariton condensates.


  1. 1.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang. Bose-Einstein condensation of exciton polaritons. Nature 443(7110), 409–414 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Y. Yamamoto, Coherent zero-state and \(\pi \)-state in an exciton-polariton condensate array. Nature 450(7169), 529–532 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    H. Deng, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99(12), 126403 (2007)Google Scholar
  4. 4.
    H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298(5591), 199–202 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kasprzak, M. Richard, A. Baas, B. Deveaud, R. Andre, J.-P. Poizat, L.S. Dang, Second-order time correlations within a polariton Bose-Einstein condensate in a CdTe microcavity. Phys. Rev. Lett. 100(6), 067402 (2008)Google Scholar
  6. 6.
    H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl. Acad. Sci. USA 100(26), 15318–15323 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    H. Deng, D. Press, S. Götzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97(14), 146402 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Richard, J. Kasprzak, R. André, R. Romestain, L.S. Dang, G. Malpuech, A. Kavokin, Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72(20), 201301 (2005)Google Scholar
  9. 9.
    M. Richard, J. Kasprzak, R. Romestain, R. André, L.S. Dang, Spontaneous coherent phase transition of polaritons in CdTe microcavities. Phys. Rev. Lett. 94(18), 187401 (2005)Google Scholar
  10. 10.
    A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53(6), 4250 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    L.S. Dang, D. Heger, R. André, F. Bœuf, R. Romestain, Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81(18), 3920 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    R.M. Stevenson, V.N. Astratov, M.S. Skolnick, D.M. Whittaker, M. Emam-Ismail, A.I. Tartakovskii, P.G. Savvidis, J.J. Baumberg, J.S. Roberts, Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85(17), 3680–3683 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316(5827), 1007–1010 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A. Baas, J.-P. Karr, M. Romanelli, A. Bramati, E. Giacobino, Quantum degeneracy of microcavity polaritons. Phys. Rev. Lett. 96(17), 176401 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    H. Deng, Dynamic condensation of semiconductor microcavity polaritons. Ph.D. thesis, Department of Applied Physics, Stanford University (2006)Google Scholar
  16. 16.
    H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82(2), 1489 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. Kasprzak, D.D. Solnyshkov, R. Andre, L.S. Dang, G. Malpuech, Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101(14), 146404 (2008)Google Scholar
  18. 18.
    M. Aßmann, J.-S. Tempel, F. Veita, M. Bayer, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl. Acad. Sci. USA 108, 1804–1809 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    T. Horikiri, P. Schwendimann, A. Quattropani, S. Höfling, A. Forchel, Y. Yamamoto, Higher order coherence of exciton-polariton condensates. Phys. Rev. B 81(3), 033307 (2010)Google Scholar
  20. 20.
    E. Kammann, H. Ohadi, M. Maragkou, A V. Kavokin, P.G. Lagoudakis, Crossover from photon to exciton-polariton lasing. New J. Phys. 14(10), 105003 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    G. Roumpos, C.-W. Lai, T.C.H. Liew, Y.G. Rubo, A.V. Kavokin, Y. Yamamoto, Signature of the microcavity exciton-polariton relaxation mechanism in the polarization of emitted light. Phys. Rev. B 79(19), 195310 (2009)Google Scholar
  22. 22.
    A.V. Larionov, V.D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, A. Forchel, Polarized nonequilibrium Bose-Einstein condensates of spinor exciton polaritons in a magnetic field. Phys. Rev. Lett. 105(25), 256401 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A. Rahimi-Iman, A.V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, M. Kamp, Coherence signatures and density-dependent interaction in a dynamical exciton-polariton condensate. Phys. Rev. B 86(15), 155308 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A. Demenev, S. Gavrilov, V. Kulakovskii, Stimulated polariton-polariton scattering and dynamic Bose-Einstein condensation of polaritons in GaAs microcavities under excitation near the exciton resonance. JETP Lett. 95(1), 38–43 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    P. Walker, T.C.H. Liew, D. Sarkar, M. Durska, A.P.D. Love, M.S. Skolnick, J.S. Roberts, I.A. Shelykh, A.V. Kavokin, D.N. Krizhanovskii, Suppression of Zeeman splitting of the energy levels of exciton-polariton condensates in semiconductor microcavities in an external magnetic field. Phys. Rev. Lett. 106(25), 257401 (2011)Google Scholar
  26. 26.
    G. Roumpos, W.H. Nitsche, S. Höfling, A. Forchel, Y. Yamamoto, Gain-induced trapping of microcavity exciton polariton condensates. Phys. Rev. Lett. 104(12), 126403 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    E. Wertz, A. Amo, D.D. Solnyshkov, L. Ferrier, T.C.H. Liew, D. Sanvitto, P. Senellart, I. Sagnes, A. Lemaître, A.V. Kavokin, G. Malpuech, J. Bloch, Propagation and amplification dynamics of 1d polariton condensates. Phys. Rev. Lett. 109, 216404 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    R. Houdré, J.L. Gibernon, P. Pellandini, R.P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, M. Ilegems, Saturation of the strong-coupling regime in a semiconductor microcavity: free-carrier bleaching of cavity polaritons. Phys. Rev. B 52(11), 7810 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    J. Bloch, B. Sermage, M. Perrin, P. Senellart, R. André, L.S. Dang, Monitoring the dynamics of a coherent cavity polariton population. Phys. Rev. B 71(15), 155311 (2005)Google Scholar
  30. 30.
    M. Steger, C. Gautham, D.W. Snoke, L. Pfeiffer, K. West, Slow reflection and two-photon generation of microcavity exciton-polaritons. Optica 2(1), 1 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martín, A. Lemaître, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Viña, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457(7227), 291–295 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    G. Roumpos, M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Single vortex-antivortex pair in an exciton-polariton condensate. Nat. Phys. 7(2), 129–133 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S.H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90(25), 251109 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, J.M. Gérard, Electrically driven high-Q quantum dot-micropillar cavities. Appl. Phys. Lett. 92(9), 091107 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, A. Forchel, Low threshold electrically pumped quantum dot-micropillar lasers. Appl. Phys. Lett. 93(6), 061104 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969 (1995)Google Scholar
  38. 38.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75(9), 1687 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    A. Rahimi-Iman. Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser (Cuvillier Verlag, Göttingen, 2013)Google Scholar
  40. 40.
    T.C.H. Liew, O.A. Egorov, M. Matuszewski, O. Kyriienko, X. Ma, E.A. Ostrovskaya, Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates. Phys. Rev. B 91(8), 085413 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56(12), 7554 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    Y.G. Rubo, Kinetics of the polariton condensate formation in a microcavity. Phys. Stat. Sol. (a) 201(4), 641–645 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32(10), 6601 (1985)ADSCrossRefGoogle Scholar
  44. 44.
    J.D. Plumhof, T. Stöferle, L. Mai, U. Scherf, R.F. Mahrt, Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247 (2014). Published online Dec 2013ADSCrossRefGoogle Scholar
  45. 45.
    F. Tassone, Y. Yamamoto, Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59(16), 10830 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    P. Senellart, J. Bloch, B. Sermage, J.Y. Marzin, Microcavity polariton depopulation as evidence for stimulated scattering. Phys. Rev. B 62(24), R16263 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84(7), 1547 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    M.D. Martin, G. Aichmayr, A. Amo, D. Ballarini, Polariton and spin dynamics in semiconductor microcavities under non-resonant excitation. J. Phys.: Condens. Matter 19(29), 295204 (2007)Google Scholar
  49. 49.
    B. Deveaud, Polariton interactions in semiconductor microcavities. Comptes Rendus Phys. 17(8), 874–892 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    J.-S. Tempel, F. Veit, M. Aßmann, L.E. Kreilkamp, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, M. Bayer, Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B 85(7), 075318 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    S. Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Observation of Bogoliubov excitations in exciton-polariton condensates. Nat. Phys. 4(9), 700–705 (2008)CrossRefGoogle Scholar
  52. 52.
    P. Schwendimann, A. Quattropani, Statistics of the polariton condensate. Phys. Rev. B 77(8), 085317 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    J.M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, R. Huber, Revealing the dark side of a bright exciton-polariton condensate. Nat. Commun. 5, 4648 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B 58(12), 7926–7933 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Excitonic Bloch equations for a two-dimensional system of interacting excitons. Phys. Rev. B 61(20), 13856–13862 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    T.D. Doan, H. Thien Cao, D.B. Tran Thoai, H. Haug, Coherence of condensed microcavity polaritons calculated within Boltzmann-Master equations. Phys. Rev. B 78(20), 205306 (2008)Google Scholar
  57. 57.
    D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100(4), 047401 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    D. Bajoni, P. Senellart, A. Lemaître, J. Bloch, Photon lasing in GaAs microcavity: similarities with a polariton condensate. Phys. Rev. B 76(20), 201305(R) (2007)ADSCrossRefGoogle Scholar
  59. 59.
    B. Deveaud-Plédran, On the condensation of polaritons. J. Opt. Soc. Am. B 29(2), A138–A145 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Hoefling, An electrically pumped polariton laser. Nature 497, 348 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, L.S. Dang, B. Deveaud-Plédran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4(9), 706–710 (2008)Google Scholar
  62. 62.
    M.D. Fraser, G. Roumpos, Y. Yamamoto, Vortex-antivortex pair dynamics in an exciton-polariton condensate. New J. Phys. 11, 113048 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5(11), 805–810 (2009)zbMATHCrossRefGoogle Scholar
  64. 64.
    K.G. Lagoudakis, T. Ostatnický, A.V. Kavokin, Y.G. Rubo, R. André, B. Deveaud-Plédran, Observation of half-quantum vortices in an exciton-polariton condensate. Science 326(5955), 974–976 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    D. Sanvitto, F.M. Marchetti, M.H. Szymanska, G. Tosi, M. Baudisch, F.P. Laussy, D.N. Krizhanovskii, M.S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, L. Viña, Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6(7), 527–533 (2010)CrossRefGoogle Scholar
  66. 66.
    A. Amo, S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, Polariton superfluids reveal quantum hydrodynamic solitons. Science 332(6034), 1167–1170 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. De Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V.G. Sala, P.S.S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, G. Gigli, All-optical control of the quantum flow of a polariton condensate. Nat. Phot. 5, 610–614 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    G. Nardin, G. Grosso, Y. Leger, B. Pietka, F. Morier-Genoud, B. Deveaud-Plédran, Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7(8), 635–641 (2011)CrossRefGoogle Scholar
  69. 69.
    G. Tosi, D. Sanvitto, M. Baudisch, E. Karimi, B. Piccirillo, L. Marrucci, A. Lemaître, J. Bloch, L. Viña, Vortex stability and permanent flow in nonequilibrium polariton condensates. J. Appl. Phys. 109, 102406 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    G. Tosi, F.M. Marchetti, D. Sanvitto, C. Antón, M.H. Szymańska, A. Berceanu, C. Tejedor, L. Marrucci, A. Lemaître, J. Bloch, L. Viña, Onset and dynamics of vortex-antivortex pairs in polariton optical parametric oscillator superfluids. Phys. Rev. Lett. 107(3), 036401 (2011)Google Scholar
  71. 71.
    C. Antón, G. Tosi, M.D. Martén, L. Viña, A. Lemaître, J. Bloch, Role of supercurrents on vortices formation in polariton condensates. Opt. Express 20(15), 16366–16373 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84(16), 165325 (2011)ADSCrossRefGoogle Scholar
  73. 73.
    T.D. Doan, H. Thien Cao, D.B. Tran Thoai, H. Haug, Relaxation kinetics for temperature and degeneracy of microcavity polaritons. Solid State Commun. 145, 48–51 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    D. Read, T.C.H. Liew, Y.G. Rubo, A.V. Kavokin, Stochastic polarization formation in exciton-polariton Bose-Einstein condensates. Phys. Rev. B 80(19), 195309 (2009)Google Scholar
  75. 75.
    N. Na, Y. Yamamoto, Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to Mott-insulator quantum phase transition. New J. Phys. 12, 123001 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    I.A. Shelykh, A.V. Kavokin, Y.G. Rubo, Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25(1), 013001 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Y.G. Rubo, A.V. Kavokin, I.A. Shelykh, Suppression of superfluidity of exciton-polaritons by magnetic field. Phys. Lett. A 358(3), 227–230 (2006)ADSzbMATHCrossRefGoogle Scholar
  78. 78.
    T.C.H. Liew, Y.G. Rubo, I.A. Shelykh, A.V. Kavokin, Suppression of Zeeman splitting and polarization steps in localized exciton-polariton condensates. Phys. Rev. B 77(12), 125339 (2008)Google Scholar
  79. 79.
    J. Fischer, S. Brodbeck, A.V. Chernenko, I. Lederer, A. Rahimi-Iman, M. Amthor, V.D. Kulakovskii, L. Worschech, M. Kamp, M. Durnev, C. Schneider, A.V. Kavokin, S. Höfling, Anomalies of a nonequilibrium spinor polariton condensate in a magnetic field. Phys. Rev. Lett. 112, 093902 (2014)Google Scholar
  80. 80.
    A.V. Chernenko, A. Rahimi-lman, J. Fischer, M. Amthor, C. Schneider, S. Reitzenstein, A. Forchel, S. Höfling, Polariton condensate coherence in planar microcavities in a magnetic field. Semiconductors 50(12), 1609–1613 (2016)ADSCrossRefGoogle Scholar
  81. 81.
    E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860–864 (2010)CrossRefGoogle Scholar
  82. 82.
    A.A. Michelson, E.W. Morley, On the relative motion of the Earth and the luminiferous ether. Am. J. Sci. s334(203), 333–345 (1887)ADSzbMATHCrossRefGoogle Scholar
  83. 83.
    A.J. Leggett, Bose-Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73(2), 307 (2001)Google Scholar
  84. 84.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)Google Scholar
  85. 85.
    K.S. Daskalakis, S.A. Maier, R. Murray, S. Kéna-Cohen, Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13(3), 271–278 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    J. Fischer, I.G. Savenko, M.D. Fraser, S. Holzinger, S. Brodbeck, M. Kamp, I.A. Shelykh, C. Schneider, S. Höfling, Spatial coherence properties of one dimensional exciton-polariton condensates. Phys. Rev. Lett. 113(20), 203902 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    G. Roumpos, M. Lohse, W.H. Nitsche, J. Keeling, M.H. Szymańska, P.B. Littlewood, A. Löffler, S. Höfling, L. Worschech, A. Forchel, Y. Yamamoto, Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Natl. Acad. Sci. USA (2012). Scholar
  88. 88.
    R. Hanbury Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)ADSCrossRefGoogle Scholar
  89. 89.
    S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, D. Bouwmeester, Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96(12), 127404 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    S.M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, P. Michler. Photon statistics of semiconductor microcavity lasers. Phys. Rev. Lett. 98(4), 043906 (2007)Google Scholar
  91. 91.
    M. Amthor, S. Weißenseel, J. Fischer, M. Kamp, C. Schneider, S. Höfling, Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Opt. Express 22(25), 31146–31153 (2014)ADSCrossRefGoogle Scholar
  92. 92.
    S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, H. Deng, Coherent polariton laser. Phys. Rev. X 6(1), 011026 (2016)Google Scholar
  93. 93.
    N.D. Vy, H.T. Cao, D.B.T. Thoai, H. Haug, Time dependence of the ground-state population statistics of condensed microcavity polaritons. Phys. Rev. B, 80(19), 195306 (2009)Google Scholar
  94. 94.
    M. De Giorgi, D. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, D. Sanvitto, Relaxation oscillations in the formation of a polariton condensate. Phys. Rev. Lett. 112(11), 113602 (2014)ADSCrossRefGoogle Scholar
  95. 95.
    L. Dominici, G. Dagvadorj, J.M. Fellows, D. Ballarini, M. De Giorgi, F.M. Marchetti, B. Piccirillo, L. Marrucci, A. Bramati, G. Gigli, M.H. Szymañska, D. Sanvitto, Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci. Adv. 1(11), e1500807 (2015)ADSCrossRefGoogle Scholar
  96. 96.
    L. Dominici, M. Petrov, M. Matuszewski, D. Ballarini, M. De Giorgi, D. Colas, E. Cancellieri, B.S. Fernández, A. Bramati, G. Gigli, A. Kavokin, F. Laussy, D. Sanvitto, Real-space collapse of a polariton condensate. Nat. Commun. 6, 8993 (2015)Google Scholar
  97. 97.
    N.Y. Kim, K. Kusudo, C. Wu, N. Masumoto, A. Löffler, S. Höfling, N. Kumada, L. Worschech, A. Forchel, Y. Yamamoto. Dynamical d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential. Nat. Phys. 7(9), 681–686 (2011)ADSCrossRefGoogle Scholar
  98. 98.
    N.Y. Kim, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-polariton condensates near the Dirac point in a triangular lattice. New J. Phys. 15, 035032 (2013)ADSCrossRefGoogle Scholar
  99. 99.
    K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E.A. Ostrovskaya, M. Kamp, C. Schneider, S. Höfling, A polariton condensate in a photonic crystal potential landscape. New J. Phys. 17, 023001 (2015)ADSCrossRefGoogle Scholar
  100. 100.
    M. Klaas, S. Mandal, T.C.H. Liew, M. Amthor, S. Klembt, L. Worschech, C. Schneider, S. Höfling, Optical probing of the Coulomb interactions of an electrically pumped polariton condensate. Appl. Phys. Lett. 110(15), 151103 (2017)ADSCrossRefGoogle Scholar
  101. 101.
    P. Cristofolini, G. Christmann, S.I. Tsintzos, G. Deligeorgis, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, J.J. Baumberg, Coupling quantum tunneling with cavity photons. Science 336(6082), 704–707 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    T.C.H. Liew, M.M. Glazov, K.V. Kavokin, I.A. Shelykh, M.A. Kaliteevski, A.V. Kavokin, Proposal for a bosonic cascade laser. Phys. Rev. Lett. 110(4), 047402 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    I.G. Savenko, I.A. Shelykh, M.A. Kaliteevski, Nonlinear terahertz emission in semiconductor microcavities. Phys. Rev. Lett. 107(2), 027401 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    S. Huppert, O. Lafont, E. Baudin, J. Tignon, R. Ferreira, Terahertz emission from multiple-microcavity exciton-polariton lasers. Phys. Rev. B 90(24), 241302(R) (2014)ADSCrossRefGoogle Scholar
  105. 105.
    K.V. Kavokin, M.A. Kaliteevski, R.A. Abram, A.V. Kavokin, S. Sharkova, I.A. Shelykh, Stimulated emission of terahertz radiation by exciton-polariton lasers. Appl. Phys. Lett. 97(20), 201111–3 (2010)ADSCrossRefGoogle Scholar
  106. 106.
    L. Dominici, D. Colas, S. Donati, J.P. Restrepo Cuartas, M. De Giorgi, D. Ballarini, G. Guirales, J.C. López Carreño, A. Bramati, G. Gigli, E. Del Valle, F.P. Laussy, D. Sanvitto, Ultrafast control and Rabi oscillations of polaritons. Phys. Rev. Lett. 113(22), 226401 (2014)Google Scholar
  107. 107.
    A.D. Jameson, J.L. Tomaino, Y.-S. Lee, G. Khitrova, H.M. Gibbs, C.N. Böttge, A.C. Klettke, M. Kira, S.W. Koch, Direct measurement of light-matter energy exchange inside a microcavity. Optica 1(5), 276 (2014)ADSCrossRefGoogle Scholar
  108. 108.
    S.S. Gavrilov, A.S. Brichkin, A.A. Demenev, A.A. Dorodnyy, S.I. Novikov, V.D. Kulakovskii, S.G. Tikhodeev, N.A. Gippius, Bistability and nonequilibrium transitions in the system of cavity polaritons under nanosecond-long resonant excitation. Phys. Rev. B 85, 075319 (2012)ADSCrossRefGoogle Scholar
  109. 109.
    M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I.A. Shelykh, A.V. Kavokin, C. Schneider, S. Höfling, Optical bistability in electrically driven polariton condensates. Phys. Rev. B 91, 081404 (2015)Google Scholar
  110. 110.
    M. Klaas, H. Sigurdsson, T.C.H. Liew, S. Klembt, M. Amthor, F. Hartmann, L. Worschech, C. Schneider, S. Höfling, Electrical and optical switching in the bistable regime of an electrically injected polariton laser. Phys. Rev. B 96(4), 041301 (2017)ADSCrossRefGoogle Scholar
  111. 111.
    D. Colas, L. Dominici, S. Donati, A.A. Pervishko, T.C.H. Liew, I.A. Shelykh, D. Ballarini, M. De Giorgi, A. Bramati, G. Gigli, E. Del Valle, F.P. Laussy, A.V. Kavokin, D. Sanvitto, Polarization shaping of Poincaré beams by polariton oscillations. Light Sci. Appl. 4, e350 (2015)CrossRefGoogle Scholar
  112. 112.
    S. Klembt, E. Durupt, S. Datta, T. Klein, A. Baas, Y. Léger, C. Kruse, D. Hommel, A. Minguzzi, M. Richard, Exciton-polariton gas as a nonequilibrium coolant. Phys. Rev. Lett. 114(18), 186403 (2015)ADSCrossRefGoogle Scholar
  113. 113.
    D. Ballarini, M.D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto, All-optical polariton transistor. Nat. Commun. 4, 1778 (2013)ADSCrossRefGoogle Scholar
  114. 114.
    F. Marsault, H.S. Nguyen, D. Tanese, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, J. Bloch, Single-wavelength, all-optical switching based on exciton-polaritons. Appl. Phys. Lett 107, 5263 (2015)Google Scholar
  115. 115.
    H.S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, J. Bloch, Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013)Google Scholar
  116. 116.
    C. Sturm, D. Tanese, H. Nguyen, H. Flayac, E. Galopin, A. Lemaître, A. Amo, G. Malpuech, J. Bloch, All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer. Nat. Commun. 5, 3278 (2014)Google Scholar
  117. 117.
    S.S. Demirchyan, I. Yu Chestnov, A.P. Alodjants, M.M. Glazov, A.V. Kavokin, Qubits based on polariton Rabi oscillators. Phys. Rev. Lett. 112(19), 196403 (2014)Google Scholar
  118. 118.
    G. Tosi, G. Christmann, N.G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P.G. Savvidis, J.J. Baumberg, Sculpting oscillators with light within a nonlinear quantum fluid. Nat. Phys. (2012)Google Scholar
  119. 119.
    O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J.L. Staehli, F. Morier-Genoud, B. Deveaud, Polariton quantum boxes in semiconductor microcavities. Appl. Phys. Lett. 88(6), 061105–3 (2006)ADSCrossRefGoogle Scholar
  120. 120.
    E.A. Cerda-Méndez, D. Krizhanovskii, K. Biermann, K. Guda, R. Bradley, R. Hey, P.V. Santos, M.S. Skolnick, One dimensional confinement of microcavity polaritons using non-piezoelectric surface acoustic waves. Phys. E: Low-Dimens. Syst. Nanostructures 42(10), 2548–2551 (2010)ADSCrossRefGoogle Scholar
  121. 121.
    Á. Cuevas, J.C.L. Carreño, B. Silva, M. De Giorgi, D.G. Suárez-Forero, C.S. Muñoz, A. Fieramosca, F. Cardano, L. Marrucci, V. Tasco, G. Biasiol, E. Del Valle, L. Dominici, D. Ballarini, G. Gigli, P. Mataloni, F.P. Laussy, F. Sciarrino, D. Sanvitto, First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Sci. Adv. 4(4), eaao6814 (2018)ADSCrossRefGoogle Scholar
  122. 122.
    D. Caputo, D. Ballarini, G. Dagvadorj, C.S. Muñoz, M. De Giorgi, L. Dominici, K. West, L.N. Pfeiffer, G. Gigli, F.P. Laussy, M.H. Szymanska, D.Sanvitto, Topological order and thermal equilibrium in polariton condensates. Nat. Mater. 17(2), 145–151 (2018)ADSCrossRefGoogle Scholar
  123. 123.
    N. Ishida, T. Byrnes, T. Horikiri, F. Nori, Y. Yamamoto, Photoluminescence of high-density exciton-polariton condensates. Phys. Rev. B 90(24), 241304 (2014)ADSCrossRefGoogle Scholar
  124. 124.
    D. Ballarini, D. Caputo, C.S. Muñoz, M. De Giorgi, L. Dominici, M.H. Szymanska, K. West, L.N. Pfeiffer, G. Gigli, F.P. Laussy, D. Sanvitto, Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118(21), 215301 (2017)Google Scholar
  125. 125.
    S. Christopoulos, G.B.H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98(12), 126405 (2007)Google Scholar
  126. 126.
    G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93(5), 051102 (2008)ADSCrossRefGoogle Scholar
  127. 127.
    J.J. Baumberg, A.V. Kavokin, S. Christopoulos, A.J.D. Grundy, R. Butté, G. Christmann, D.D. Solnyshkov, G. Malpuech, G.B.H. von Högersthal, E. Feltin, J.-F. Carlin, N. Grandjean, Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101(13), 136409 (2008)Google Scholar
  128. 128.
    A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, P. Bhattacharya, Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett. 107(6), 066405 (2011)Google Scholar
  129. 129.
    L. Sun, S. Sun, H. Dong, W. Xie, M. Richard, L. Zhou, L.S. Dang, X. Shen, Z. Chen, Room temperature one-dimensional polariton condensate in a ZnO microwire (2010). arXiv:1007.4686v1 (unpublished)
  130. 130.
    T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, S. Bouchoule, Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99(16), 161104 (2011)ADSCrossRefGoogle Scholar
  131. 131.
    C. Sturm, H. Hilmer, R. Schmidt-Grund, M. Grundmann, Exciton-polaritons in a ZnO-based microcavity: polarization dependence and nonlinear occupation. New J. Phys. 13(3), 033014 (2011)ADSCrossRefGoogle Scholar
  132. 132.
    A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B.S. Ooi, P. Bhattacharya, Room temperature strong coupling effects from single ZnO nanowire microcavity. Opt. Express 20(11), 11830–11837 (2012)ADSCrossRefGoogle Scholar
  133. 133.
    W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, L. Jian, X. Shen, Z. Chen, Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett. 108(16), 166401 (2012)ADSCrossRefGoogle Scholar
  134. 134.
    Q. Duan, X. Dan, W. Liu, L. Jian, L. Zhang, J. Wang, Y. Wang, G. Jie, H. Tao, W. Xie, X. Shen, Z. Chen, Polariton lasing of quasi-whispering gallery modes in a ZnO microwire. Appl. Phys. Lett. 103(2), 022103 (2013)ADSCrossRefGoogle Scholar
  135. 135.
    F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, G. Malpuech. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110(19), 196406 (2013)Google Scholar
  136. 136.
    R. Su, C. Diederichs, J. Wang, T.C.H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17(6), 3982–3988 (2017)ADSCrossRefGoogle Scholar
  137. 137.
    S. Kéna-Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Phot. 4(6), 371–375 (2010)ADSCrossRefGoogle Scholar
  138. 138.
    P. Bhattacharya, T. Frost, S. Deshpande, M.Z. Baten, A. Hazari, A. Das, Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014)ADSCrossRefGoogle Scholar
  139. 139.
    A. Bhattacharya, M.Z. Baten, I. Iorsh, T. Frost, A. Kavokin, P. Bhattacharya. Output polarization characteristics of a GaN microcavity diode polariton laser. Phys. Rev. B 94(3), 5203 (2016)Google Scholar
  140. 140.
    E. Estrecho, T. Gao, N. Bobrovska, M.D. Fraser, M. Steger, L. Pfeiffer, K. West, T.C.H. Liew, M. Matuszewski, D.W. Snoke, A.G. Truscott, E.A. Ostrovskaya, Single-shot condensation of exciton polaritons and the hole burning effect. Nat. Commun. 9(1), 2944 (2018)ADSCrossRefGoogle Scholar
  141. 141.
    M. Glauser, R. Butté, Relative intensity noise and emission linewidth of polariton laser diodes. Phys. Rev. B 88(11), 115305 (2013)ADSCrossRefGoogle Scholar
  142. 142.
    M.D. Fraser, Coherent exciton-polariton devices. Semicond. Sci. Technol. 32(9), 093003 (2017)ADSCrossRefGoogle Scholar
  143. 143.
    R. Onofrio, C. Raman, J.M. Vogels, J.R. Abo-Shaeer, A.P. Chikkatur, W. Ketterle, Observation of superfluid flow in a Bose-Einstein condensed gas. Phys. Rev. Lett. 85(11), 2228–2231 (2000)ADSCrossRefGoogle Scholar
  144. 144.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities, vol. 1 (Oxford University Press, Oxford, 2017)Google Scholar
  145. 145.
    K.S. Daskalakis, S.A. Maier, S. Kéna-Cohen, Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015)ADSCrossRefGoogle Scholar
  146. 146.
    G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K.S. Daskalakis, L. Dominici, M. De Giorgi, S.A. Maier, G. Gigli, S. Kéna-Cohen, D. Sanvitto, Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837 (2017)CrossRefGoogle Scholar
  147. 147.
    P.C. Hohenberg. Existence of long-range order in one and two dimensions. Phys. Rev. 158(2), 383 (1967)ADSCrossRefGoogle Scholar
  148. 148.
    N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17(22), 1133 (1966)ADSCrossRefGoogle Scholar
  149. 149.
    V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. J. Exp. Theor. Phys. 34, 610 (1972)Google Scholar
  150. 150.
    J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6(7), 1181 (1973)ADSCrossRefGoogle Scholar
  151. 151.
    A. Posazhennikova, Colloquium: weakly interacting, dilute Bose gases in 2D. Rev. Mod. Phys. 78(4), 1111–1134 (2006)ADSCrossRefGoogle Scholar
  152. 152.
    T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis, B.P. Anderson, Observation of vortex dipoles in an oblate Bose-Einstein condensate. Phys. Rev. Lett. 104(16), 160401 (2010)ADSCrossRefGoogle Scholar
  153. 153.
    T. Boulier, H. Terças, D.D. Solnyshkov, Q. Glorieux, E. Giacobino, G. Malpuech, A. Bramati, Vortex chain in a resonantly pumped polariton superfluid. Sci. Rep. 5, 09230 (2015)ADSCrossRefGoogle Scholar
  154. 154.
    V.B. Timoffeev, Bose condensation of exciton polaritons in microcavities. Fizika i Tekhnika Poluprovodnikov 46(7), 865–883 (2012). engl. translation in Semiconductors 46(7), S. 843, Springer (2012)Google Scholar
  155. 155.
    D. Sanvitto, S. Kéna-Cohen, The road towards polaritonic device. Nat. Mater. 15, 1061 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physics DepartmentPhilipps-Universität MarburgMarburgGermany

Personalised recommendations