Spectroscopy Techniques for Polariton Research

  • Arash Rahimi-ImanEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 229)


The emission from the exciton–polariton state that is formed in a strongly-coupled QW-microcavity system is correlated to the composite quasi-particles’ state. Thus, a direct experimental access to the properties of polariton gases in solids is provided by means of optical spectroscopy. In fact, the light originating from the decay process of the polaritons inside a cavity is emitted under that angle relative to the cavity axis that corresponds to the in-plane momentum component of the cavity mode coupled to the QW exciton mode due to momentum conservation. This renders angle-resolved spectroscopy an indispensable tool for gathering information about the polaritonic system, which is strongly represented by its energy–momentum dispersion and the anti-crossing behaviour of the coupled optical resonances. Therefore, one can conveniently extract characteristics of the system by means of spectroscopy, which give insight into occupation numbers, effective masses and statistical distributions of particles in the system. In addition, time-resolved spectroscopy increases the ability to characterize polariton gases drastically, as the available and established methods shed light on those systems’ dynamics on the most-relevant time scales. Many of the essential techniques will be briefly summarized here and the relevant terminology introduced.


  1. 1.
    L. Esaki, New phenomenon in narrow Germanium p-n junctions. Phys. Rev. 109(2), 603–604 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Höfling, An electrically pumped polariton laser. Nature 497, 348 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    A. Rahimi-Iman, Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser (Cuvillier Verlag, Göttingen, 2013)Google Scholar
  4. 4.
    M. Amthor, J. Fischer, I.G. Savenko, I.A. Shelykh, A. Chernenko, A. Rahimi-Iman, V.D. Kulakovskii, S. Reitzenstein, N.Y. Kim, M. Durnev, A.V. Kavokin, Y. Yamamoto, A. Forchel, M. Kamp, C. Schneider, S. Höfling, Exciton-polariton laser diodes, in Proceedings of the SPIE, Nanophotonics and Micro/Nano Optics II, ed. by Z. Zhou, K. Wada (SPIE, 2014)Google Scholar
  5. 5.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature, 443(7110), 409–414 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G. Roumpos, M. Lohse, W.H. Nitsche, J. Keeling, M.H. Szymańska, P.B. Littlewood, A. Löffler, S. Höfling, L. Worschech, A. Forchel, Y. Yamamoto, Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Natl. Acad. Sci. USA (2012). Scholar
  7. 7.
    K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, L.S. Dang, B. Deveaud-Plédran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4(9), 706–710 (2008)Google Scholar
  8. 8.
    G. Roumpos, M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Single vortex-antivortex pair in an exciton-polariton condensate. Nat. Phys. 7(2), 129–133 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A. Amo, S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, Polariton superfluids reveal quantum hydrodynamic solitons. Science 332(6034), 1167–1170 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    L. Dominici, G. Dagvadorj, J.M. Fellows, D. Ballarini, M. De Giorgi, F.M. Marchetti, B. Piccirillo, L. Marrucci, A. Bramati, G. Gigli, M.H. Szymañska, D. Sanvitto, Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci. Adv. 1(11), e1500807 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    T. Boulier, H. Terças, D.D. Solnyshkov, Q. Glorieux, E. Giacobino, G. Malpuech, A. Bramati, Vortex chain in a resonantly pumped polariton superfluid. Sci. Rep. 5, 09230 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    H. Deng, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99(12), 126403 (2007)Google Scholar
  13. 13.
    C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Y. Yamamoto, Coherent zero-state and \(\pi \)-state in an exciton-polariton condensate array. Nature 450(7169), 529–532 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    R.I. Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J.D. Ganière, J.L. Staehli, V. Savona, B. Deveaud, Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74(15):155311 (2006)Google Scholar
  15. 15.
    G. Roumpos, W.H. Nitsche, S. Höfling, A. Forchel, Y. Yamamoto, Gain-induced trapping of microcavity exciton polariton condensates. Phys. Rev. Lett. 104(12), 126403 (2010)Google Scholar
  16. 16.
    E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860–864 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Wertz, A. Amo, D.D. Solnyshkov, L. Ferrier, T.C.H. Liew, D. Sanvitto, P. Senellart, I. Sagnes, A. Lemaître, A.V. Kavokin, G. Malpuech, J. Bloch, Propagation and amplification dynamics of 1d polariton condensates. Phys. Rev. Lett. 109, 216404 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martín, A. Lemaître, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Viña, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457(7227), 291–295 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    T. Gao, P.S. Eldridge, T.C.H. Liew, S.I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, P.G. Savvidis, Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Y.J. Chen, J.D. Cain, T.K. Stanev, V.P. Dravid, N.P. Stern, Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photon. 11(7), 431–435 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M. Richard, J. Kasprzak, R. Romestain, R. André, L.S. Dang, Spontaneous coherent phase transition of polaritons in CdTe microcavities. Phys. Rev. Lett. 94(18), 187401 (2005)Google Scholar
  22. 22.
    D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, J. Bloch, Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77(11), 113303 (2008)Google Scholar
  23. 23.
    F. Veit, M. Aßmann, M. Bayer, A. Löffler, S. Höfling, M. Kamp, A. Forchel, Spatial dynamics of stepwise homogeneously pumped polariton condensates. Phys. Rev. B 86(19), 195313 (2012)Google Scholar
  24. 24.
    Hamamatsu Photonics, Universal streak camera C10910 series,
  25. 25.
    M. Aßmann, J.-S. Tempel, F. Veita, M. Bayer, A. Rahimi-Iman, A. Löffler, S. Höfling, S. Reitzenstein, L. Worschech, A. Forchel, From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl. Acad. Sci. USA 108, 1804–1809 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M. Müller, R. André, J. Bleuse, L.S. Dang, A. Huynh, J. Tignon, P. Roussignol, C. Delalande, Non-linear polariton dynamics in II-VI microcavities. Semicond. Sci. Technol. 18(10), S319 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    J. Bloch, B. Sermage, M. Perrin, P. Senellart, R. André, L.S. Dang, Monitoring the dynamics of a coherent cavity polariton population. Phys. Rev. B 71(15), 155311 (2005)Google Scholar
  28. 28.
    J.J. Baumberg, P.G. Lagoudakis, Parametric amplification and polariton liquids in semiconductor microcavities. Phys. Status Solidi (b) 242(11), 2210–2223 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    D. Ballarini, D. Sanvitto, A. Amo, L. Viña, M. Wouters, I. Carusotto, A. Lemaître, J. Bloch, Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Phys. Rev. Lett. 102(5), 056402 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    M. Steger, C. Gautham, D.W. Snoke, L. Pfeiffer, K. West, Slow reflection and two-photon generation of microcavity exciton-polaritons. Optica 2(1), 1 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    M. De Giorgi, D. Ballarini, P. Cazzato, G. Deligeorgis, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, G. Gigli, F.P. Laussy, D. Sanvitto, Relaxation oscillations in the formation of a polariton condensate. Phys. Rev. Lett. 112(11), 113602 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    R.A. Kaindl, M.A. Carnahan, D. Hägele, R. Lövenich, D.S. Chemla, Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 423(6941), 734–738 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Tomaino, A.D. Jameson, Y.-S. Lee, G. Khitrova, H.M. Gibbs, A.C. Klettke, M. Kira, S.W. Koch, Terahertz excitation of a coherent \(\Lambda \)-type three-level system of exciton-polariton modes in a quantum-well microcavity. Phys. Rev. Lett. 108(26), 267402 (2012)Google Scholar
  34. 34.
    A.D. Jameson, J.L. Tomaino, Y.-S. Lee, G. Khitrova, H.M. Gibbs, C.N. Böttge, A.C. Klettke, M. Kira, S.W. Koch, Direct measurement of light-matter energy exchange inside a microcavity. Optica 1(5), 276 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    A.E. Almand-Hunter, H. Li, S.T. Cundiff, M. Mootz, M. Kira, S.W. Koch, Quantum droplets of electrons and holes. Nature 506(7489), 471–475 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    L. Dominici, D. Colas, S. Donati, J.P.R. Cuartas, M. De Giorgi, D. Ballarini, G. Guirales, J.C.L. Carreño, A. Bramati, G. Gigli, E. Del Valle, F.P. Laussy, D. Sanvitto, Ultrafast control and Rabi oscillations of polaritons. Phys. Rev. Lett. 113(22), 226401 (2014)Google Scholar
  37. 37.
    D. Colas, L. Dominici, S. Donati, A.A. Pervishko, T.C.H. Liew, I.A. Shelykh, D. Ballarini, M. De Giorgi, A. Bramati, G. Gigli, E. Del Valle, F.P. Laussy, A.V. Kavokin, D. Sanvitto, Polarization shaping of Poincaré beams by polariton oscillations. Light Sci. Appl. 4, e350 (2015)CrossRefGoogle Scholar
  38. 38.
    J.M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, R. Huber, Revealing the dark side of a bright exciton-polariton condensate. Nat. Commun. 5, 4648 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physics DepartmentPhilipps-Universität MarburgMarburgGermany

Personalised recommendations