Optical Microcavities for Polariton Studies

  • Arash Rahimi-ImanEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 229)


In the past two decades, optical microcavities with very high optical quality and their rapid development substantially enabled the achievement of polariton condensation and the investigation of bosonic many-body phenomena such as superfluidity and Bose–Einstein condensation . Similarly, the demonstration of a polariton-laser device strongly relied on technological advances in the fabrication of multi-quantum-well (QW) microresonators. In this context, the general design and concept of optical structures for polariton physics will be summarized and the prominent example of a planar microcavity based on III/V semiconductors introduced. Beginning with the concept of planar Fabry–Pérot microcavities with an optical cavity sandwiched between Bragg mirrors, the principles of QW-based polariton structures will be explained. Thereafter, the resonator properties such as the transmission function, density of states and quality factor will be summarized which are relevant for the experimental realization of polaritons in practical structures.


  1. 1.
    J. Vaughan, The Fabry-Perot interferometer (Hilger, 1989)Google Scholar
  2. 2.
    J.K. Vahala, Optical microcavities. Nature 424(6950), 839–846 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    S. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (John Wiley & Sons, 2003)Google Scholar
  4. 4.
    M.S. Skolnick, T.A. Fisher, D.M. Whittaker, Strong coupling phenomena in quantum microcavity structures. Semicond. Sci. Technol. 13, 645–669 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Ioffe-Institute. Electronic Archive: New Semiconductor Materials. Characteristics and Properties (St. Petersburg, 2012)
  6. 6.
    A.V. Kavokin, J. Jeremy, G. Malpuech, F.P. Laussy, Microcavities. (Oxford University Press, Baumberg, 2007)Google Scholar
  7. 7.
    Renchun Tao, Kenji Kamide, Munetaka Arita, Satoshi Kako, Yasuhiko Arakawa, Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed bragg reflectors. ACS Photonics 3(7), 1182–1187 (2016)CrossRefGoogle Scholar
  8. 8.
    P. Bienstman, R. Baets, Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt. Quantum Electron. 33(4–5), 327–341 (2001)CrossRefGoogle Scholar
  9. 9.
    Z. Knittl, Optics of Thin Films; an Optical Multilayer Theory (Wiley, 1976)Google Scholar
  10. 10.
    V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Commun. 93(9), 733–739 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Hui Deng, Hartmut Haug, Yoshihisa Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82(2), 1489 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Rahimi-Iman, Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser. (Cuvillier Verlag Göttingen, 2013)Google Scholar
  13. 13.
    J.M. Gérard, D. Barrier, J.Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry Mieg, T. Rivera, Quantum boxes as active probes for photonic microstructures: the pillar microcavity case. Appl. Phys. Lett. 69, 449 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P.A. Knipp, T.L. Reinecke, Size dependence of confined optical modes in photonic quantum dots. Phys. Rev. Lett. 78(2), 378–381 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Daniele Bajoni, Pascale Senellart, Esther Wertz, Isabelle Sagnes, Audrey Miard, Aristide Lemaître, Jacqueline Bloch, Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities, Phys. Rev. Lett. 100(4), 047401 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Reitzenstein, A. Forchel, Quantum dot micropillars. J. Phys. D: Appl. Phys. 43(3), 033001 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J.L. Staehli, F. Morier-Genoud, B. Deveaud, Polariton quantum boxes in semiconductor microcavities. Appl. Phys. Lett. 88(6), 061105 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Andreas Muller, Chih-Kang Shih, Lu Jaemin Ahn, Deepa Gazula Dingyuan, Dennis G. Deppe, High Q (33 000) all-epitaxial microcavity for quantum dot vertical-cavity surface-emitting lasers and quantum light sources. Appl. Phys. Lett. 88, 031107 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    P. Lugan, D. Sarchi, V. Savona, Theory of trapped polaritons in patterned microcavities. Phys. Stat. Sol. (c) 3, 2428–2431 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    S. Portolan, P. Hauke, V. Savona, Parametric photoluminescence of spatially confined polaritons in patterned microcavities. Phys. Stat. Sol. (b) 245(6), 1089–1092 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860–864 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Fischer, I.G. Savenko, M.D. Fraser, S. Holzinger, S. Brodbeck, M. Kamp, I.A. Shelykh, C. Schneider, S. Höfling, Spatial coherence properties of one dimensional exciton-polariton condensates. Phys. Rev. Lett. 113(20), 203902 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Azzini, D. Gerace, M, Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, D. Bajoni, Ultra-low threshold polariton lasing in photonic crystal cavities. Appl. Phys. Lett. 99(11), 111106 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84(16), 165325 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    X. Liu, T. Galfsky, Z. Sun, F. Xia, E.C. Lin, Y.H. Lee, S. Kéna-Cohen, V.M. Menon, Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9(1), 30–34 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S. Dufferwiel, S. Schwarz, F. Withers, A.A.P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D.D. Solnyshkov, G. Malpuech, K.S. Novoselov, J.M. Smith, M.S. Skolnick, D.N. Krizhanovskii, A.I. Tartakovskii, Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015)Google Scholar
  27. 27.
    L.C. Flatten, Z. He, D.M. Coles, A.A.P. Trichet, A.W. Powell, R.A. Taylor, J.H. Warner, J.M. Smith, Room-temperature exciton-polaritons with two-dimensional WS 2. Sci. Rep. 6, 33134 (2016)Google Scholar
  28. 28.
    P. Qing, J. Gong, X. Lin, N. Yao, W. Shen, A. Rahimi-Iman, W. Fang, L. Tong, A simple approach to fiber-based tunable microcavity with high coupling efficiency. Appl. Phys. Lett. 114, 021106 (2019)ADSCrossRefGoogle Scholar
  29. 29.
    A. Rahimi-Iman, A.V. Chernenko, J. Fischer, S. Brodbeck, M. Amthor, C. Schneider, A. Forchel, S. Höfling, S. Reitzenstein, M. Kamp, Coherence signatures and density-dependent interaction in a dynamical exciton-polariton condensate. Phys. Rev. B 86(15), 155308 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, 2000)Google Scholar
  31. 31.
    A. Kavokin, G. Malpuech, Cavity Polaritons (Academic Press, 2003)Google Scholar
  32. 32.
    B. Deveaud. The Physics of Semiconductor Microcavities. (WILEY-VCH Verlag, 2007)Google Scholar
  33. 33.
    J. Bloch, T. Freixanet, J.Y. Marzin, V. Thierry-Mieg, R. Planel, Giant Rabi splitting in a microcavity containing distributed quantum wells. Appl. Phys. Lett. 73(12), 1694–1696 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298(5591), 199–202 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69(23), 3314 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    R. Houdré, R.P. Stanley, U. Oesterle, M. Ilegems, C. Weisbuch, Room-temperature cavity polaritons in a semiconductor microcavity. Phys. Rev. B 49(23), 16761 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, L. Si Dang. Bose-Einstein condensation of exciton polaritons. Nature 443(7110), 409–414 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    R. Houdré, J.L. Gibernon, P. Pellandini, R.P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, M. Ilegems, Saturation of the strong-coupling regime in a semiconductor microcavity: free-carrier bleaching of cavity polaritons. Phys. Rev. B 52(11), 7810 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    J. Bloch, B. Sermage, C. Jacquot, P. Senellart, V. Thierry-Mieg, Time-resolved measurement of stimulated polariton relaxation. Phys. Stat. Sol. (a) 190, 827–831 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, A GaAs polariton light-emitting diode operating near room temperature. Nature 453(7193), 372–375 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Alexey Kavokin, Guillaume Malpuech, Fabrice P. Laussy, Polariton laser and polariton superfluidity in microcavities. Phys. Lett. A 306(4), 187–199 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    Daniele Bajoni, Elizaveta Semenova, Aristide Lemaître, Sophie Bouchoule, Esther Wertz, Pascale Senellart, Jacqueline Bloch, Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77(11), 113303 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    A.A. Khalifa, A.P.D. Love, D.N. Krizhanovskii, M.S. Skolnick, J.S. Roberts, Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92(6), 061107 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Leo Esaki, New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109(2), 603–604 (1958)ADSCrossRefGoogle Scholar
  45. 45.
    T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, K.J. Ebeling, Multistage bipolar cascade vertical-cavity surface-emitting lasers: theory and experiment. IEEE JSTQE 9(5), 1406 (2003)ADSGoogle Scholar
  46. 46.
    S. Brodbeck, J.-P. Jahn, A. Rahimi-Iman, J. Fischer, M. Amthor, S. Reitzenstein, M. Kamp, C. Schneider, S. Höfling, Room temperature polariton light emitting diode with integrated tunnel junction. Opt. Express 21(25), 31098–31104 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    T.C.H. Liew, I.A. Shelykh, G. Malpuech, Polaritonic devices. Phys. E: Low-Dimens. Syst. Nanostructures 43(9), 1543–1568 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    K. Vahala, Optical microcavities. (World Scientific, 2004)Google Scholar
  49. 49.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities, vol. 1. (Oxford University Press, 2017)Google Scholar
  50. 50.
    T. Gutbrod, M. Bayer, A. Forchel, J.P. Reithmaier, T.L. Reinecke, S. Rudin, P.A. Knipp, Weak and strong coupling of photons and excitons in photonic dots. Phys. Rev. B 57(16), 9950 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    C.F. Klingshirn, Semiconductor Optics. (Springer, 2012)Google Scholar
  52. 52.
    T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197–200 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95(6), 067401 (2005)Google Scholar
  55. 55.
    M. Bayer, T. Gutbrod, J.P. Reithmaier, A. Forchel, T.L. Reinecke, P.A. Knipp, A.A. Dremin, V.D. Kulakovskii, Optical modes in photonic molecules. Phys. Rev. Lett. 81(12), 2582–2585 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    M. Bayer, T. Gutbrod, A. Forchel, T.L. Reinecke, P.A. Knipp, R. Werner, J.P. Reithmaier, Optical demonstration of a crystal band structure formation. Phys. Rev. Lett. 83(25), 5374–5377 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    M. Born, E. Wolf, Principals of Optics (Cambridge University Press, 1999)Google Scholar
  58. 58.
    C. Wilmsen, H. Temkin, L.A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, 1999)Google Scholar
  59. 59.
    A. Löffler, J.P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, A. Forchel, Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions. Appl. Phys. Lett. 86, 111105 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    E. F. Schubert, Light-Emitting Diodes, 2nd edn. (Cambridge University Press, 2006)Google Scholar
  61. 61.
    M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, M. Hetterich, Dependencies of micro-pillar cavity quality factors calculated with finite element methods. Opt. Express 17(2), 1144–1158 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S.H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90(25), 251109 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, J.M. Gérard, Electrically driven high-Q quantum dot-micropillar cavities. Appl. Phys. Lett. 92(9), 091107 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Hoefling, An electrically pumped polariton laser. Nature 497, 348 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physics DepartmentPhilipps-Universität MarburgMarburgGermany

Personalised recommendations