Advertisement

A Prototype of Service Oriented Architecture for Precision Agriculture

  • S. LanucaraEmail author
  • A. Oggioni
  • S. Di Fazio
  • G. Modica
Conference paper
  • 33 Downloads
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 67)

Abstract

Precision Agriculture (PA) takes advantage of digital technologies to improve agricultural production and its economic and environmental sustainability. The main issues in the implementation and spread of PA include (a) harmonization and (b) interpretation of heterogeneous data collected from different sources; (c) interoperability of systems and data; (d) implementation of new algorithms and methodologies coming from research projects; (e) semantic enablement of meta-data. To help solve these issues we propose a software infrastructure prototype developed in the framework of the SATFARMING project, and based on Service Oriented Architecture (SOA) concept, free open-source software (FOSS), interoperability of data and web services through the accomplishment of international standards, semantic enablement of data description.

Keywords

Precision Agriculture (PA) Service Oriented Architecture (SOA) Open Geospatial Consortium (OGC) Free and Open Source Software (FOSS) Interoperability Semantic Enablement 

Notes

Acknowledgements

The activity presented in the paper is part of the research grant SATFARMING-2017–19.

References

  1. Brovelli, M. A., Minghini, M., Moreno-Sanchez, R., & Oliveira, R. (2017). Free and open source software for geospatial applications (FOSS4G) to support future earth. International Journal of Digital Earth, 10, 386–404.CrossRefGoogle Scholar
  2. Chen, N., Zhang, X., & Wang, C. (2015). Integrated open geospatial web service enabled cyber-physical information infrastructure for precision agriculture monitoring. Computers and Electronics in Agriculture, 111, 78–91.CrossRefGoogle Scholar
  3. Commission, European. (2007). Establishing an Infrastructure for Spatial Information in the European Community (INSPIRE), Directive 2007/2/EC, Official. Journal of European Union, 50, 1–14.Google Scholar
  4. Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design. Prentice Hall PTR.Google Scholar
  5. FAO. (2009). How to feed the world in 2050, Rome: s.n.Google Scholar
  6. FAO. (2017). Information and Communication Technology (ICT) in Agriculture, Rome: s.n.Google Scholar
  7. Lanucara, S., Fugazza, C., Tagliolato, P., & Oggioni, A. (2018). Information systems for precision agriculture: Monitoring computation of prescription maps. ERCIM News, 113, 24–25.Google Scholar
  8. Ministero delle politiche agricole alimentari, forestali e del turismo. (2017). Linee guida per lo sviluppo dell’Agricoltura di Precisione in Italia, Rome: s.n.Google Scholar
  9. Modica, G., Laudari, L., Barreca, F., & Fichera, C. R. (2014). A GIS-MCDA based model for the suitability evaluation of traditional grape varieties: The case-study of ‘Mantonico’ grape (Calabria, Italy). International Journal of Agricultural and Environmental Information Systems, 5, 1–16.  https://doi.org/10.4018/ijaeis.2014070101.CrossRefGoogle Scholar
  10. Modica, G., Pollino, M., Lanucara, S., La Porta, L., Pellicone, G., Di Fazio, S., et al. (2016). Land suitability evaluation for agro-forestry: Definition of a web-based multi-criteria spatial decision support system (MC-SDSS): Preliminary results. In International Conference on Computational Science and Its Applications—ICCSA 2016. Lecture Notes in Computer Science, vol 9788. Cham: Springer.Google Scholar
  11. Murakami, E., Saraiva, A. M., Ribeiro, L. C. M., Cugnasca, C. E., Hirakawa, A. R., & Correa, P. L. P. (2007). An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Computers and Electronics in Agriculture, 58, 37–48.CrossRefGoogle Scholar
  12. Nash, E., Korduan, P., & Bill, R. (2009). Applications of open geospatial web services in precision agriculture: A review. Precision Agriculture, 10, 546–560.CrossRefGoogle Scholar
  13. Nikkilä, R., Seilonen, I., & Koskinen, K. (2010). Software architecture for farm management information systems in precision agriculture. Computers and Electronics in Agriculture, 70(2), 328–336.CrossRefGoogle Scholar
  14. Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics and directions. In Proceedings of the Fourth International Conference on Web Information Systems Engineering, 2003. WISE 2003. IEEE.Google Scholar
  15. Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented computing: State of the art and research challenges. Computer, 40(11), 38–45.CrossRefGoogle Scholar
  16. Pavesi, F., Basoni, A., Fugazza, C., Menegon, S., Oggioni, A., Pepe, M., Tagliolato, P. and Carrara, P., 2016. EDI–A Template-Driven Metadata Editor for Research Data. Journal of Open Research Software, 4(1), e40. http://doi.org/10.5334/jors.106.
  17. Pepe, M., Candiani, G., Pavesi, F., Lanucara, S., Guarneri, T., & Caceffo D. (2019). SDI and smart technologies for the dissemination of EO-derived information on a rural district. New Metropolitan Perspectives. ISHT 2018. Smart Innovation, Systems and Technologies, vol 100. Cham: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Lanucara
    • 1
    Email author
  • A. Oggioni
    • 1
  • S. Di Fazio
    • 2
  • G. Modica
    • 2
  1. 1.Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche (IREA-CNR)MilanItaly
  2. 2.Dipartimento di AgrariaUniversità degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly

Personalised recommendations