Effect of Packaging Technology on the Quality of Pre-cooled Clementine Fruit

  • F. GenoveseEmail author
  • G. C. Di Renzo
  • G. Altieri
  • L. Scarano
  • M. C. Strano
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 67)


This paper reports the results of comparative tests using pre-cooling and an innovative packaging device on Clementine fruit (Citrus clementina Hort. ex Tan.) aiming to reduce the weight loss and to preserve fruit quality. The tests were carried out by dividing Clementine fruits into six homogeneous lots: three lots were subjected to the pre-cooling (using a cooling unit prototype) followed by controlled temperature storage (6 ± 0.5 °C, RH 90–95%), three lots were directly stored in cold storage room without pre-cooling. Moreover, in order to verify the effect on fruit weight loss, traditional HDPE bags and the same bags improved with an innovative breathable device were used for the packaging. To evaluate the effect of the treatments were used: fruit weight, peel and pulp colour, deformation, firmness, juice yield, total soluble solids content, pH and titratable acidity. After 15 and 30 days of cold storage, plus 7 days of shelf-life, were assessed: VOC, O2 and CO2 concentration inside the packaging, weight loss, decay incidence and physiological disorders. Results showed that during the storage using HDPE bags the fruit weight loss, chilling injury and ageing were significantly reduced with respect to unwrapped fruit. However, a higher presence of total decay was observed in all wrapped fruit, although it was absent on precooled fruit, up to 15 days of cold storage. Precooling reduced significantly ethylene production inside packaging.


Citrus fruit Postharvest Smart packaging Fruit quality Shelf-life 


  1. Altieri, G., Di Renzo, G. C., Genovese, F., Calandra, M., & Strano, M. C. (2013). A new method for the postharvest application of imazalil fungicide to citrus fruit. Biosystems Engineering, 115, 434–443.CrossRefGoogle Scholar
  2. Altieri, G., Di Renzo, G. C., & Lanza, G. (2005). Imazalil on-line control in post-harvest treatments of citrus fruit. Acta Horticulturae, 682, 1773–1780.CrossRefGoogle Scholar
  3. Altieri, G., Genovese, F., Matera, A., Tauriello, A., & Di Renzo, G. C. (2018). Characterization of an innovative device controlling gaseous exchange in packages for food products. Postharvest Biology and Technology, 138, 64–73.CrossRefGoogle Scholar
  4. Altieri, G., Genovese, F., Tauriello, A., Di Renzo, G. C., Strano, M. C., & Romeo, F. V. (2016). Effectiveness of thin film application of imazalil fungicide on decay control of Tarocco orange fruit. Biosystems Engineering, 151, 399–408.CrossRefGoogle Scholar
  5. AOAC. (1995). Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists.Google Scholar
  6. Brosnan, S. (2001). Precooling techniques and applications for horticultural products—A Review. International Journal of Refrigeration, 24, 154–170.CrossRefGoogle Scholar
  7. Di Renzo, G. C., Altieri, G., D’Erchia, L., Lanza, G., & Strano, M. C. (2005a). Effects of gaseous ozone exposure on cold stored orange fruit. Acta Horticulturae, 682, 1605–1610.CrossRefGoogle Scholar
  8. Di Renzo, G. C., Altieri, G., & Genovese, F. (2005b). Conservazione dei prodotti agro-alimentari. Ottimizzazione degli aerorefrigeranti. Zerosottozero, 6, 60–66.Google Scholar
  9. Di Renzo, G. C., Altieri, G., & Genovese, F. (2011a). Innovazione tecnologica degli impianti per le industrie agro-alimentari in Basilicata. In M. Maldonato (Ed.), Fenomenologia della scoperta (pp. 265–273). Milan: Bruno Mondadori.Google Scholar
  10. Di Renzo, G. C., Altieri, G., Genovese, F., & Tauriello, A. (2011b). Realizzazione e controllo di un impianto di prerefrigerazione ad aria in depressione per gli agrumi. AIIA Mid-Term Conference, “Gestione e controllo dei sistemi agrari e forestali”, Belgirate (VB), 22–24 settembre 2011. Lecture n. 81.
  11. Di Renzo, G. C., Altieri, G., Lanza, G., Di Martino Aleppo, E., & Strano, M. C. (2006). Il controllo in continuo dell’ozono e dell’Imazalil impiegati nella postraccolta degli agrumi. Italus Hortus, 13, 48–53.Google Scholar
  12. Di Renzo, G. C., Altieri, G., Lanza, G., Genovese, F., & Strano, M. C. (2007). Problematiche del settore postraccolta. Italus Hortus, 14, 47–49.Google Scholar
  13. Eckert, J. W., & Eaks, I. L. (1989). Postharvest disorders and diseases of citrus fruits. In W. Reuter, E. C. Calavan, & G. E. Carman (Eds.), The citrus industry (Vol. 5, pp. 179–260). Berkeley, CA, USA: University of California Press.Google Scholar
  14. Fabroni, S., Romeo, F. V., & Rapisarda, P. (2016). Nutritional composition of clementine (Citrus x clementina) cultivars. In M. S. J. Simmonds & V. R. Preedy (Eds.), Nutritional composition of fruit cultivars (pp. 149–172). Cambridge, MA: Academic Press. ISBN: 9780124081178.Google Scholar
  15. Genovese, F., Altieri, G., Admane, N., Salamon, I., & Di Renzo, G. C. (2015). Processing plants and technologies for a sustainable Mediterranean food chain. In A. Vastola (Ed.), The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin (pp. 339–351). Cham: Springer. Google Scholar
  16. Ismail, M., & Zhang, J. (2004). Postharvest citrus diseases and their control. Outlooks on Pest Management, 15(1), 29–35.CrossRefGoogle Scholar
  17. Jiménez-Cuesta, M., Cuquerella, J., & Martínez-Jávega, J. (1981). Determination of a color index for citrus fruit degreening. Proceedings of the International Society of Citriculture, 2, 750–753.Google Scholar
  18. Kalbasi-Ashtari, A. (2004). Effects of post-harvest pre-cooling processes and cyclical heat treatment on the physico-chemical properties of “Red Haven Peaches” and “Shahmiveh Pears” during cold storage. Agricultural Engineering International, 6, 1–17.Google Scholar
  19. Ladaniya, M. S. (2008). Citrus fruit: Biology, technology and evaluation. San Diego: Academic Press.Google Scholar
  20. Lafuente, M. T., & Zacarias, L. (2006). Postharvest physiological disorders in citrus fruit. Stewart Posthar. Rev., 2(1), 1–9.Google Scholar
  21. Lallu, N., Yearsley, C. W., & Elgar, H. J. (2000). Effects of cooling treatments and physical damage on tip rot and postharvest quality of asparagus spears. New Zealand Journal of Crop and Horticultural Science, 28(1), 27–36.CrossRefGoogle Scholar
  22. Li, J., Yan, J., Cao, J., Zhao, Y., & Jiang, W. (2012). Preventing the wound-induced deterioration of Yali pears by chitosan coating treatments. Food Science and Technology International, 18(2), 123–128.CrossRefGoogle Scholar
  23. Matera, A., Genovese, F., Altieri, G., Tauriello, A., & Di Renzo, G. C. (2017). An innovative smart device to control modified atmosphere packaging (MAP) of fruit and vegetables. Chemical Engineering Transactions, 58, 193–198.Google Scholar
  24. Mitcham, B., Cantwell, M., & Kader, A. (1996). Methods for determining quality of fresh commodities. Perishables Handling Newsletter, 85, 1–5.Google Scholar
  25. Rab, A., Rehman, H., Haq, I., Sajid, M., Nawab, K., & Ali, K. (2013). Harvest stages and pre-cooling influence the quality and storage life of tomato fruit. Journal of Animal and Plant Sciences, 23(5), 1347–1352.Google Scholar
  26. Saltveit, M. E. (2004). Respiratory metabolism. In K. C. Gross et al. (Ed.), The commercial storage of fruits, vegetables, and florist and nursery stocks. USDA Agricultural Handbook Number 66 (pp. 68–76). Beltsville, MD: USDA/ARS.Google Scholar
  27. Schena, L., Strano, M. C., Sanzani, S. M., & Ippolito, A. (2011). Le malattie degli agrumi in postraccolta. Protezione delle Colture, Anno IV(9), 30–41.Google Scholar
  28. Strano, M. C., Altieri, G., Admane, N., Genovese, F., & Di Renzo, G. C. (2017). Advance in citrus postharvest management: Diseases, cold storage and quality evaluation. In H. Gill & H. Garg (Eds.), Citrus Pathology. IntechOpen.
  29. Tauriello, A., Di Renzo, G. C., Altieri, G., Strano, M. C., Genovese, F., & Calandra, M. (2015). Simulation of cold treatment during a cargo shipment of citrus fruit. Acta Horticulturae, 1065, 1685–1692.CrossRefGoogle Scholar
  30. Thompson, J. F., Mitchell, F. G., Rumsey, R. T., Kasmire, R. F., Crisosto, C. H. (2008). Commercial cooling of fruit, vegetables and flowers (p. 61). California: University of California.Google Scholar
  31. Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1–14.CrossRefGoogle Scholar
  32. Wu, W., Häller, P., Cronjé, P., & Defraeye, T. (2018). Full-scale experiments in forced-air precoolers for citrus fruit: Impact of packaging design and fruit size on cooling rate and heterogeneity. Biosystems Engineering, 169, 115–125.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • F. Genovese
    • 1
    Email author
  • G. C. Di Renzo
    • 1
  • G. Altieri
    • 1
  • L. Scarano
    • 1
  • M. C. Strano
    • 2
  1. 1.Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE)Università degli Studi della BasilicataPotenzaItaly
  2. 2.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA)Centro di ricerca Olivicoltura, Frutticoltura e AgrumicolturaAcireale (CT)Italy

Personalised recommendations