Assessment of Forest Biomass and Carbon Stocks at Stand Level Using Site-Specific Primary Data to Support Forest Management

  • Luca NoniniEmail author
  • Calogero Schillaci
  • Marco Fiala
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 67)


To quantify and map woody biomass (WB) and forest carbon (C) stocks, several models were developed. They differ in terms of scale of application, details related to the input data required and outputs provided. Local Authorities, such as Mountain Communities, can be supported in sustainable forest planning and management by providing specific models in which the reference unit is the same as the one reported in the Forest Management Plans (FMP), i.e. the forest stand. In the Lombardy Region (Northern Italy), a few studies were performed to assess WB and forest C stocks, and they were generally based on data coming from regional—or national—forest inventories and remote sensing, without taking into account data collected in the FMPs. For this study, the first version of the stand-level model “WOody biomass and Carbon ASsessment” (WOCAS) for WB and C stocks calculation was improved into a second version (WOCAS v2) and preliminary results about its first application to 2019 forest stands of Valle Camonica District (Lombardy Region) are presented. Since the model WOCAS uses the growing stock as the main driver for the calculation, it can be applied in any other forest area where the same input data are available.


Forest modelling Woody biomass Carbon stock Forest management plan Site-specific primary data Climate change mitigation 


  1. Alenius, V., Hökkä, H., Salminen, H., & Jutras, S. (2003). Evaluating estimation methods for logistic regression in modelling individual-tree mortality. In A. Amaro, D. Reed, & P. Soares (Eds.), Modelling forest systems (pp. 225–236). United Kingdom: CAB International, Wallingford.Google Scholar
  2. Bennett, E. M., Peterson, G. D., & Gordon, L. J. (2009). Understanding relationships among multiple ecosystem services. Ecology Letters, 12, 1394–1404.CrossRefGoogle Scholar
  3. Birch, C. P. D. (1999). A new generalized logistic sigmoid growth equation compared with the richards growth equation. Annals of Botany, 83, 713–723.CrossRefGoogle Scholar
  4. Bottalico, F., Pesola, L., Vizzarri, M., Antonello, L., Barbati, A., Chirici, G., et al. (2016). Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region. Environmental Research, 144, 72–87.CrossRefGoogle Scholar
  5. Cantiani, M. G. (2012). Forest planning and public participation: A possible methodological approach. iForest-Biogeosciences and Forestry 5(2), 72–82.CrossRefGoogle Scholar
  6. Colombo, R., Busetto, L., Migliavacca, M., Meroni, M., Della Torre, C., Tagliaferri, A., Grassi, G., & Seufert, G. (2009). Modellistica del ciclo del carbonio degli ecosistemi agro-forestali in regione Lombardia. Forest@ 6, 277–288.Google Scholar
  7. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
  8. Daily, G. C., & Matson, P. A. (2008). Ecosystem services: From theory to implementation. Proceedings of the National Academy of Sciences USA, 105, 9455–9456.CrossRefGoogle Scholar
  9. Ekholm, T. (2016). Optimal forest rotation age under efficient climate change mitigation. Forest Policy and Economics, 62, 62–68.CrossRefGoogle Scholar
  10. Federici, S., Vitullo, M., Tulipano, S., De Lauretis, R., & Seufert, G. (2008). An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: The Italian case. iForest–Biogeosciences and Forestry 1, 86–95.Google Scholar
  11. Garcia-Gonzalo, J., Bushenkov, V., McDill, M. E., & Borges, J. G. (2015). A decision support system for assessing trade-offs between ecosystem management goals: An application in Portugal. Forests, 6, 65–87.CrossRefGoogle Scholar
  12. Gren, I. M., & Zeleke, A. A. (2016). Policy design for forest carbon sequestration: A review of the literature. Forest Policy and Economics, 70, 128–136.CrossRefGoogle Scholar
  13. Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., et al. (1986). Ecology of coarse woody debris in temperate ecosystems. In A. MacFadyen & E. D. Ford (Eds.), Advances in ecological research (pp. 133–302). Orlando, United States: Academic Press.CrossRefGoogle Scholar
  14. Harmon, M. E., Krankina, O. N., Yatskov, M., & Matthew, E. (2001). Predicting Broad-scale Carbon Stock of Woody Detritus from Plot-Level Data. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment Methods for Soil Carbon (533–552). Boca Raton, United States: Lewis Publishers.Google Scholar
  15. IPPC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry, and Other Land Use. Chapter 2. Generic Methodologies Applicable to Multiple Land-Use Categories.
  16. Klein, D., Hollerl, S., Blaschke, M., & Schulz, C. (2013). The contribution of managed and unmanaged forests to climate change mitigation–a model approach at stand level for the main tree species in Bavaria. Forests, 4, 43–69.CrossRefGoogle Scholar
  17. Krieger, D. J. (2011). Economic value of forest ecosystem services: A review (1st ed.). Washington, United States: The Wilderness Society.Google Scholar
  18. Kroll, F., Müller, F., Haase, D., & Fohrer, N. (2012). Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy, 29(3), 521–535.CrossRefGoogle Scholar
  19. Magnani, F, & Raddi, S. (2014). Verso una stima della mortalità individuale e degli incrementi netti dei boschi italiani. Quale margine di sostenibilità per la gestione forestale in Italia? Forest@ 11, 138–148.Google Scholar
  20. Marchetti, M., Sallustio, L., Ottaviano, M., Barbati, A., Corona, P., Tognetti, R., Zavattero, L., & Capotorti, G. (2012). Carbon sequestration by forests in the national parks of Italy. Plant Biosystems. An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the Società Botanica Italiana 146(4), 1001–1011.Google Scholar
  21. Melin, Y., Petersson, H., & Nordfjell, T. (2009). Decomposition of stump and root systems of Norway spruce in Sweden–A modelling approach. Forest Ecology and Management, 257(5), 1445–1451.CrossRefGoogle Scholar
  22. Nabuurs, G. J., Thürig, E., Heidema, N., Armolaitis, K., Biber, P., Cienciala, E., et al. (2008). Hotspots of the European forests carbon cycle. Forest Ecology and Management, 256(3), 194–200.CrossRefGoogle Scholar
  23. Pienaar, L. V., & Turnbull, K. J. (1973). The Chapman-Richards generalization of von Bertalanffy’s growth model for basal area growth and yield in even-aged stands. Forest Science, 19(1), 2–22.Google Scholar
  24. Pilli, R., Grassi, G., Kurz, W. A., Smyth, C. E., & Blujdea, V. (2013). Application of the CBM-CFS3 model to estimate Italy’s forest carbon budget, 1995–2020. Ecological Modelling, 266, 144–171.CrossRefGoogle Scholar
  25. Pretzsch, H. (2009). Forest dynamics, growth and yield (1st ed.). Berlin Heidelberg, Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
  26. Richards, F. J. (1959). A Flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290–301.CrossRefGoogle Scholar
  27. Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., & Weiss, P. (2007). Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126(2), 197–207.CrossRefGoogle Scholar
  28. Swetnam, R. D., Fisher, B., Mbilinyi, B. P., Munishi, P. K. T., Willcock, S., Ricketts, T., et al. (2011). Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. Journal of Environmental Management, 92(3), 563–574.CrossRefGoogle Scholar
  29. Tabacchi, G., De Natale, F., & Gasparini, P. (2010). Coerenza ed entità delle statistiche forestali. Stime degli assorbimenti netti di carbonio nelle foreste italiane. Sherwood, 165, 11–19.Google Scholar
  30. Thomas, S. C., & Martin, A. R. (2012). Carbon content of tree tissues: A synthesis. Forests, 3(2), 332–352.CrossRefGoogle Scholar
  31. UNECE/FAO. (2011). State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe. Forest Europe, UNECE/FAO, Ministerial Conference on the Protection of Forests in Europe, Oslo, Norway.Google Scholar
  32. Vanclay, J. K. (1994). Modelling forest growth and yield: Applications to mixed tropical forests (1st ed.). Wallingford, United Kingdom: CAB International.Google Scholar
  33. Vitullo, M. (2018). Personal Communication.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Agricultural and Environmental Sciences. Production, Landscape, Agroenergy (DiSAA)University of MilanMilanItaly

Personalised recommendations