Advertisement

Design and Assessment of a Test Rig for Hydrodynamic Tests on Hydraulic Fluids

  • Daniele PochiEmail author
  • Roberto Fanigliulo
  • Renato Grilli
  • Laura Fornaciari
  • Carlo Bisaglia
  • Maurizio Cutini
  • Massimo Brambilla
  • Angela Sagliano
  • Luigi Capuzzi
  • Fulvio Palmieri
  • Giancarlo Chiatti
Conference paper
  • 33 Downloads
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 67)

Abstract

The adoption of a new hydraulic fluid or lubricant in a productive process depends on performing tuning tests that require complex systems and often last as long as the normal lifetime of the oil itself. This is an important issue, since there is an intense activity of development of bio-based lubricants, with high biodegradability, intended to replace the conventional mineral ones. Based on this trend, CREA, Italy, developed an Oil Test Rig (OTR) for hydraulic fluids performing heavy work cycles with small oil volumes, with the aim of accelerating the fluid’s aging with respect to what usually occurs, e.g., in agricultural applications. The possibility to control the hydraulic workload and to repeat the work cycles allows the comparative evaluation of fluids by observing their performances and the variations in chemical–physical properties. The OTR acceptance test was carried out using a widespread and reliable mineral fluid (assumed as a reference for future tests) in a 230 h work cycle at two operating temperatures: 50 °C (150 h) and 60 °C (80 h). The applied pressure was 40 MPa and determined a thermal leap of about 20 °C. The OTR maintained constant all functional parameters during the work cycle. It seems to be suitable for comparative tests between bio-based and conventional fluids.

Keywords

High-pressure pump Thermal jump Flow rate Dynamical performance 

References

  1. Biondi, P. (1999). Meccanica agraria - Le macchine agricole. UTET, Torino, ISBN 88-02-05609-9, 171–174.Google Scholar
  2. Birkavs, A., & Smigins, R. (2018). Experimental research on compatibility of mineral and biobased hydraulic oils. Agronomy Research, 16(S1), 968–976.Google Scholar
  3. Campanella, A., Rustoy, E., Baldessari, A., Miguel, A., & Baltanás, M. A. (2010). Lubricants from chemically modified vegetable oils. Bioresource Technology, 101, 245–254.CrossRefGoogle Scholar
  4. Fitch, J. (2001, May). Trouble-shooting viscosity excursions, practicing oil analysis. NORIA Corporation. https://www.machinerylubrication.com/Read/185/viscosity-trouble-shooting.
  5. Khonsari, M., & Booser E. R. (2003, January 9). Predicting lube life. Machine Design. https://www.machinedesign.com/archive/predicting-lube-life.
  6. Kosiba, J., Čorňák, Š., Glos, J., Jablonický, J., Vozárová, V., Petrović, A., et al. (2016). Monitoring oil degradation during operating tests. Agronomy Research, 14(5), 1626–1634.Google Scholar
  7. Kržan, B., & Vižintin, J. (2003). Tribological properties of an environmentally adopted universal tractor transmission oil based on vegetable oil. Tribology International, 36(11), 827–833.  https://doi.org/10.1016/S0301-679X(03)00100-2.CrossRefGoogle Scholar
  8. Kučera, M., Aleš, Z., Mareček, J., & Machal, P. (2017). Effect of contaminants on the lifetime of hydraulic biooils and systems. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(4), 1205–1212.  https://doi.org/10.11118/actaun201765041205.CrossRefGoogle Scholar
  9. Majdan, R., Tkáč, Z., Kosiba, J., Abrahám, R., Jablonický, J., Hujo, Ľ., et al. (2013). Evaluation of tractor biodegradable hydraulic fluids on the basis of hydraulic pump wear. Research in Agricultural Engineering, 59(3), 75–82.CrossRefGoogle Scholar
  10. Osinenko, P. (2014, October 23). Optimal slip control for tractors with feedback of drive torque. Thesis, Faculty of Mechanical Science and Engineering, Technische Universität Dresden.Google Scholar
  11. Paredes, X., Comunas, M. J. P., Pensado, A. S., Bazile, J. P., Boned, C., & Fernández, J. (2014). High pressure viscosity characterization of four vegetable and mineral hydraulic oils. Industrial Crops and Products, 54, 281–290.CrossRefGoogle Scholar
  12. Renius, K. T. (1985/1994). Trends in tractor design with particular reference to Europe. Journal of Agricultural Engineering Research, 57(1), 3–22.CrossRefGoogle Scholar
  13. Totten, G. E., Melief, H. M., & Bishop, R. J. (2000). Hydraulic fluid qualification using the Rexroth high-pressure piston pump test (NFPA Technical Paper Series 100-9.2), pp. 241–249.Google Scholar
  14. Wan Nik, W. B., Zulkifli, F., Ahmad, M. F., Sulaiman, O., & Rahman, M. M. (2013). Performance evaluation of hydraulic field test rig. Procedia Engineering, 68, 613–618.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Daniele Pochi
    • 1
    Email author
  • Roberto Fanigliulo
    • 1
  • Renato Grilli
    • 1
  • Laura Fornaciari
    • 1
  • Carlo Bisaglia
    • 2
  • Maurizio Cutini
    • 2
  • Massimo Brambilla
    • 2
  • Angela Sagliano
    • 3
  • Luigi Capuzzi
    • 3
  • Fulvio Palmieri
    • 4
  • Giancarlo Chiatti
    • 4
  1. 1.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Ingegneria e Trasformazioni agroalimentariMonterotondoItaly
  2. 2.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Ingegneria e Trasformazioni agroalimentariTreviglioItaly
  3. 3.Novamont S.p.ANovaraItaly
  4. 4.Università degli Studi Roma Tre, Dipartimento di IngegneriaRomeItaly

Personalised recommendations