Advertisement

Smart Dairy Farming: Innovative Solutions to Improve Herd Productivity

  • C. Arcidiacono
  • M. Barbari
  • S. Benni
  • E. Carfagna
  • G. Cascone
  • L. Conti
  • L. di Stefano
  • M. GuarinoEmail author
  • L. Leso
  • D. Lovarelli
  • M. Mancino
  • S. Mattoccia
  • G. Minozzi
  • S. M. C. Porto
  • G. Provolo
  • G. Rossi
  • A. Sandrucci
  • A. Tamburini
  • P. Tassinari
  • N. Tomasello
  • D. Torreggiani
  • F. Valenti
Conference paper
  • 27 Downloads
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 67)

Abstract

Among the most straining trends that farmers have to face there are: on one side, to guarantee welfare and adequate life conditions for animals and to reduce the environmental footprint, on the other side, to develop new strategies to improve farm management reducing costs. The current conditions and the expected developments of the dairy sector highlight a strong need for more efficient and sustainable farming systems. Studying heat stress, herd management and housing and animals’ productive and reproductive performances is fundamental for the economic and environmental sustainability of the dairy chain. New and effective tools to cope with these challenges have been provided by Precision Livestock Farming (PLF), which is nowadays increasingly applied and makes possible to control quali-quantitative parameters related to production, health, behaviour, and real-time locomotion per animal. The research key challenge is to turn these data into knowledge to provide real-time support in farming optimisation. This research focuses specifically on different systems to collect, process and derive useful information from data on animal welfare and productivity. A multi-disciplinary approach has been adopted to generate a decision support system for farmers.

Keywords

Sustainability Animal housing Numerical modelling Efficient animal production Precision livestock farming 

Notes

Acknowledgements

The activity presented in the paper is part of the research grant Progetti di Ricerca di rilevante Interesse Nazionale—Bando 2017 Prot. 20178AN8NC.

References

  1. Arcidiacono, C., Porto, S. M. C., Mancino, M., & Cascone, G. (2017a). Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Computers and Electronics in Agriculture, 134, 124–134.CrossRefGoogle Scholar
  2. Arcidiacono, C., Porto, S. M. C., Mancino, M., & Cascone, G. (2017b). A software tool for the automatic and real-time analysis of cow velocity data in free-stall barns: The case study of oestrus detection from Ultra-Wide-Band data. Biosystems Engineering, 173, 157–165.CrossRefGoogle Scholar
  3. Bargo, F., Muller, L. D., Delahoy, J. E., & Cassidy, T. W. (2002). Performance of high producing dairy cows with three different feeding systems combining pasture and total mixed rations. Journal of Dairy Science, 85, 2948–2963.CrossRefGoogle Scholar
  4. Charlton, G. L., & Rutter, S. M. (2017). The behaviour of housed dairy cattle with and without pasture access: A review. Applied Animal Behaviour Science, 192, 2–9.CrossRefGoogle Scholar
  5. Gernand, E., König, S., & Kipp, C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. Journal of Dairy Science, 102, 6660–6671.CrossRefGoogle Scholar
  6. Legrand, A. L., von Keyserlingk, M. A. G., & Weary, D. M. (2009). Preference and usage of pasture versus free-stall housing by lactating dairy cattle. Journal of Dairy Science, 92, 3651–3658.CrossRefGoogle Scholar
  7. Mayo, L. M., Silvia, W. J., Ray, D. L., Jones, B. W., Stone, A. E., Tsai, I. C., et al. (2019). Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows. Journal of Dairy Science, 102, 2645–2656.CrossRefGoogle Scholar
  8. Porto, S. M. C., Arcidiacono, C., Anguzza, U., & Cascone, G. (2015). The automatic detection of dairy cow feeding and standing behaviours in free-stall barns by a computer vision-based system. Biosystems Engineering, 133, 46–55.CrossRefGoogle Scholar
  9. Trnovszky, T., Kamencay, P., Orjesek, R., Benco, M., & Sykora, P. (2017). Animal recognition system based on convolutional neural network. Digital Image Processing and Computer Graphics, 15(3), 517–525.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • C. Arcidiacono
    • 3
  • M. Barbari
    • 4
  • S. Benni
    • 5
  • E. Carfagna
    • 7
  • G. Cascone
    • 3
  • L. Conti
    • 4
  • L. di Stefano
    • 8
  • M. Guarino
    • 1
    Email author
  • L. Leso
    • 4
  • D. Lovarelli
    • 2
  • M. Mancino
    • 3
  • S. Mattoccia
    • 8
  • G. Minozzi
    • 6
  • S. M. C. Porto
    • 3
  • G. Provolo
    • 2
  • G. Rossi
    • 4
  • A. Sandrucci
    • 2
  • A. Tamburini
    • 2
  • P. Tassinari
    • 5
  • N. Tomasello
    • 3
  • D. Torreggiani
    • 5
  • F. Valenti
    • 3
  1. 1.Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Agricultural and Environmental Sciences, Production, Landscape, AgroenergyUniversità degli Studi di MilanoMilanItaly
  3. 3.Department of Agriculture, Food and EnvironmentUniversità degli Studi di CataniaCataniaItaly
  4. 4.Department of Agriculture, Food, Environment and ForestryUniversità degli Studi di FirenzeFlorenceItaly
  5. 5.Department of Agricultural and Food SciencesUniversità di BolognaBolognaItaly
  6. 6.Department of Veterinary MedicineUniversità degli Studi di MilanoMilanItaly
  7. 7.Department of Statistical Sciences “Paolo Fortunati”Università di BolognaBolognaItaly
  8. 8.Department of Computer Science and EngineeringUniversità di BolognaBolognaItaly

Personalised recommendations