Recent Advances in Amino Acid Production

  • Masato IkedaEmail author
  • Seiki Takeno
Part of the Microbiology Monographs book series (MICROMONO, volume 23)


The annual world production of amino acids is currently estimated at more than seven million tons and is expected to reach ten million tons by 2022. This giant market has been underpinned largely by amino acid fermentation technologies in which Corynebacterium glutamicum has played a leading role. Various genetic engineering tools and global analysis techniques for this bacterium have been developed and successfully applied with a great impact on the amino acid industry. In particular, systems biology for this bacterium is almost fully capable of predicting targets to be engineered and metabolic states that will yield maximum production, thus allowing “systems metabolic engineering” and development of industrially competitive production strains. Additionally, whole genomes of classically derived industrial producers have been analyzed by “reverse engineering” to identify important genetic traits, enabling the establishment of new industrial processes and the creation of genetically defined producers from scratch. This “genome breeding” strategy was first developed using C. glutamicum as a model and currently yields producers that are more efficient than classical ones. These advances in strain development technology have almost achieved the optimization of entire cellular systems as cell factories for amino acid production, as demonstrated by their ability to produce glutamate and lysine at concentrations now exceeding 150 g/L with estimated production yields towards sugar at almost 70%. This chapter describes advances in the production of amino acids by C. glutamicum and presents the latest details of the technology and strategies used for molecular strain improvement.


Amino acid industry Global market for amino acids Glutamate Lysine Genome breeding Systems metabolic engineering Biosensor-driven single cell screening 


  1. Airich LG, Tsyrenzhapova IS, Vorontsova OV, Feofanov AV, Doroshenko VG, Mashko SV (2010) Membrane topology analysis of the Escherichia coli aromatic amino acid efflux protein YddG. J Mol Microbiol Biotechnol 19:189–197PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ajinomoto (2007) Fact sheets: amino acids business and feed-use amino acids business.,
  3. Anaya-Reza O, Lopez-Arenas T (2017) Comprehensive assessment of the L-lysine production process from fermentation of sugarcane molasses. Bioprocess Biosyst Eng 40:1033–1048PubMedCrossRefPubMedCentralGoogle Scholar
  4. Appleton J (2002) Arginine: clinical potential of a semi-essential amino acid. Altern Med Rev 7:512–522PubMedPubMedCentralGoogle Scholar
  5. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319PubMedCrossRefGoogle Scholar
  6. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70:2861–2866PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bartek T, Makus P, Klein B, Lang S, Oldiges M (2008) Influence of L-isoleucine and pantothenate auxotrophy for L-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng 31:217–225PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010) Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26:361–371PubMedPubMedCentralGoogle Scholar
  10. Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350PubMedCrossRefGoogle Scholar
  11. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596PubMedPubMedCentralCrossRefGoogle Scholar
  12. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum - over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109PubMedCrossRefGoogle Scholar
  13. Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:7866–7869PubMedPubMedCentralCrossRefGoogle Scholar
  14. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero: design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168PubMedCrossRefGoogle Scholar
  15. Becker J, Gießelmann G, Hoffmann SL, Wittmann C (2018) Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv Biochem Eng Biotechnol 162:217–263PubMedPubMedCentralGoogle Scholar
  16. Bellmann A, Vrljić M, Pátek M, Sahm H, Krämer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bender DA (1985) Amino acid metabolism, 2nd edn. Wiley, New YorkGoogle Scholar
  18. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ (2007a) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007b) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623PubMedCrossRefGoogle Scholar
  21. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79:471–479PubMedCrossRefPubMedCentralGoogle Scholar
  22. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009a) L-valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75:1197–1200PubMedCrossRefPubMedCentralGoogle Scholar
  23. Blombach B, Hans S, Bathe B, Eikmanns BJ (2009b) Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:419–427PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bolten CJ, Schröder H, Dickschat J, Wittmann C (2010) Towards methionine overproduction in Corynebacterium glutamicum: methanethiol and dimethyldisulfide as reduced sulfur sources. J Microbiol Biotechnol 20:1196–1203PubMedCrossRefGoogle Scholar
  25. Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37PubMedCrossRefGoogle Scholar
  26. Börngen K, Battle AR, Möker N, Morbach S, Marin K, Martinac B, Krämer R (2010) The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation. Biochim Biophys Acta 1798:2141–2149PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bott M, Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129–153PubMedCrossRefPubMedCentralGoogle Scholar
  28. Brockmann-Gretza O, Kalinowski J (2006) Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230PubMedPubMedCentralCrossRefGoogle Scholar
  29. Burkovski A (2008) Corynebacteria: genomics and molecular biology. Caister Academic, NorfolkGoogle Scholar
  30. Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen L, Zeng AP (2017) Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Appl Microbiol Biotechnol 101:559–568PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP (2014) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol 80:1388–1393PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab Eng 29:66–75PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chen L, Chen M, Ma C, Zeng AP (2018) Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metab Eng 47:434–444PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cheng J, Chen P, Song A, Wang D, Wang Q (2018) Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. J Ind Microbiol Biotechnol 45:719–734PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H (2007) Innovative metabolic pathway design for efficient L-glutamate production by suppressing CO2 emission. J Biosci Bioeng 103:262–269PubMedCrossRefPubMedCentralGoogle Scholar
  37. Curis E, Crenn P, Cynober L (2007) Citrulline and the gut. Curr Opin Clin Nutr Metab Care 10:620–626PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dai Z, Nielsen J (2015) Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36:8–15PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv 29:11–23PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dong X, Zhao Y, Zhao J, Wang X (2016) Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis. J Ind Microbiol Biotechnol 43:873–885PubMedCrossRefPubMedCentralGoogle Scholar
  41. Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ebbighausen H, Weil B, Krämer R (1989) Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch Microbiol 151:238–244PubMedCrossRefPubMedCentralGoogle Scholar
  43. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca RatonCrossRefGoogle Scholar
  44. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394PubMedCrossRefGoogle Scholar
  45. Elisáková V, Pátek M, Holátko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213PubMedPubMedCentralCrossRefGoogle Scholar
  46. Feng LY, Xu JZ, Zhang WG (2018) Improved L-leucine production in Corynebacterium glutamicum by optimizing the aminotransferases. Molecules 23:2102PubMedCentralCrossRefGoogle Scholar
  47. Figge R, Soucaille P, Barbier G, Bestel-Corre G, Boisart C, Chateau M (2009) Increasing methionine yield. International Patent Application WO 2009/043803 A2Google Scholar
  48. Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249PubMedCrossRefPubMedCentralGoogle Scholar
  49. Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. In: Wendisch VF (ed) Microbiology monographs, amino acid biosynthesis - pathways, regulation and metabolic engineering. Springer, Berlin, pp 219–257CrossRefGoogle Scholar
  50. Global Market Insights (2016) Glutamic acid and monosodium glutamate (MSG) market size, potential, industry outlook, regional analysis, application development, competitive landscape & forecast, 2016–2023.
  51. Gutmann M, Hoischen C, Krämer R (1992) Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112:115–123PubMedCrossRefPubMedCentralGoogle Scholar
  52. Haitani Y, Awano N, Yamazaki M, Wada M, Nakamori S, Takagi H (2006) Functional analysis of L-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol Lett 255:156–163PubMedCrossRefPubMedCentralGoogle Scholar
  53. Han G, Hu X, Wang X (2015) Co-production of S-adenosyl-L-methionine and L-isoleucine in Corynebacterium glutamicum. Enzym Microb Technol 78:27–33CrossRefGoogle Scholar
  54. Han G, Hu X, Qin T, Li Y, Wang X (2016a) Metabolic engineering of Corynebacterium glutamicum ATCC 13032 to produce S-adenosyl-L-methionine. Enzym Microb Technol 83:14–21CrossRefGoogle Scholar
  55. Han G, Hu X, Wang X (2016b) Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-L-methionine. Biotechnol Appl Biochem 63:679–689PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hara Y, Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI (2012) The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 93:331–341PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78:865–875PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hashimoto K, Nakamura K, Kuroda T, Yabe I, Nakamatsu T, Kawasaki H (2010) The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel. Biosci Biotechnol Biochem 74:2546–2549PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hashimoto K, Murata J, Konishi T, Yabe I, Nakamatsu T, Kawasaki H (2012) Glutamate is excreted across the cytoplasmic membrane through the NCgl1221 channel of Corynebacterium glutamicum by passive diffusion. Biosci Biotechnol Biochem 76:1422–1424PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hayashi T, Juliet PA, Matsui-Hirai H, Miyazaki A, Fukatsu A, Funami J, Iguchi A, Ignarro LJ (2005) L-Citrulline and L-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits. Proc Natl Acad Sci U S A 102:13681–13686PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hayashi M, Mizoguchi H, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006a) A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:783–789PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006b) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, Fukatsu A, Funami J, Ding QF, Kamalanathan S, Hattori Y, Ignarro LJ, Iguchi A (2006c) Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci U S A 103:17018–17023PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hirao T, Nakano T, Azuma T, Sugimoto M, Nakanishi T (1989) L-lysine production in continuous culture of an L-lysine hyper- producing mutant of Corynebacterium glutamicum. Appl Microbiol Biotechnol 32:269–273CrossRefGoogle Scholar
  67. Hirasawa T, Shimizu H (2016) Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 42:133–146PubMedCrossRefPubMedCentralGoogle Scholar
  68. Hoffmann SL, Jungmann L, Schiefelbein S, Peyriga L, Cahoreau E, Portais JC, Becker J, Wittmann C (2018) Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab Eng 47:475–487PubMedCrossRefPubMedCentralGoogle Scholar
  69. Holátko J, Elisáková V, Prouza M, Sobotka M, Nesvera J, Pátek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hua K (2013) Investigating the appropriate mode of expressing lysine requirement of fish through non-linear mixed model analysis and multilevel analysis. Br J Nutr 109:1013–1021PubMedCrossRefPubMedCentralGoogle Scholar
  71. Huang Y, Zhang H, Tian H, Li C, Han S, Lin Y, Zheng S (2015) Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:7527–7537PubMedCrossRefPubMedCentralGoogle Scholar
  72. Huang Y, Li C, Zhang H, Liang S, Han S, Lin Y, Yang X, Zheng S (2016) Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity. Appl Microbiol Biotechnol 100:1789–1798PubMedCrossRefPubMedCentralGoogle Scholar
  73. Huang JF, Shen ZY, Mao QL, Zhang XM, Zhang B, Wu JS, Liu ZQ, Zheng YG (2018) Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: the molecular fundamentals of L-methionine biosynthesis in Escherichia coli. ACS Synth Biol 7:2577–2589PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hwang BJ, Park SD, Kim Y, Kim P, Lee HS (2007) Biochemical analysis on the parallel pathways of methionine biosynthesis in Corynebacterium glutamicum. J Microbiol Biotechnol 17:1010–1017PubMedPubMedCentralGoogle Scholar
  75. Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, Microbial production of L-amino acids, vol 79. Springer, Berlin, pp 1–35Google Scholar
  76. Ikeda M (2012) Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Appl Microbiol Biotechnol 96:1191–1200PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ikeda M (2017) Lysine fermentation: history and genome breeding. In: Yokota A, Ikeda M (eds) Advances in biochemical engineering/biotechnology, Amino acid fermentation, vol 159. Springer, Japan, pp 73–102Google Scholar
  78. Ikeda M, Katsumata R (1994) Transport of aromatic amino acids and its influence on overproduction of the amino acids in Corynebacterium glutamicum. J Ferment Bioeng 78:420–425CrossRefGoogle Scholar
  79. Ikeda M, Katsumata R (1995) Tryptophan production by transport mutants of Corynebacterium glutamicum. Biosci Biotechnol Biochem 59:1600–1602CrossRefGoogle Scholar
  80. Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65:2497–2502PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological process. Appl Microbiol Biotechnol 62:99–109PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ikeda M, Takeno S (2013) Amino acid production by Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Microbiology monographs, vol 23. Springer, Berlin, pp 107–147Google Scholar
  83. Ikeda M, Nakanishi K, Kino K, Katsumata R (1994) Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Biosci Biotech Biochem 58:674–678CrossRefGoogle Scholar
  84. Ikeda M, Ohnishi J, Mitsuhashi S (2005) Genome breeding of an amino acid-producing Corynebacterium glutamicum mutant. In: Barredo JLS (ed) Microbial processes and products. Humana Press, Totowa, pp 179–189CrossRefGoogle Scholar
  85. Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33:610–615PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75:1635–1641PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ikeda M, Nakano T, Mitsuhashi S, Hayashi M, Tanaka K (2010a) Process for producing L-arginine, L-ornithine or L-citrulline. US Patent 7741081B2Google Scholar
  88. Ikeda M, Takeno S, Mizuno Y, Mitsuhashi S (2010b) Process for producing useful substance. International Patent Application WO 2010/024267 A1Google Scholar
  89. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443–1451PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S (2015) A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Appl Microbiol Biotechnol 99:2741–2750PubMedCrossRefPubMedCentralGoogle Scholar
  91. Izui H, Moriya M, Hirano S, Hara Y, Ito H, Matsui K (2006) Method for producing L-glutamic acid by fermentation accompanied by precipitation. US Patent 7015010B1Google Scholar
  92. Jensen JV, Eberhardt D, Wendisch VF (2015) Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 214:85–94PubMedCrossRefPubMedCentralGoogle Scholar
  93. Jiang LY, Chen SG, Zhang YY, Liu JZ (2013a) Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 13:47PubMedPubMedCentralCrossRefGoogle Scholar
  94. Jiang LY, Zhang YY, Li Z, Liu JZ (2013b) Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40:1143–1151PubMedCrossRefPubMedCentralGoogle Scholar
  95. Joo YC, Hyeon JE, Han SO (2017) Metabolic design of Corynebacterium glutamicum for production of L-cysteine with consideration of sulfur-supplemented animal feed. J Agric Food Chem 65:4698–4707PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kabus A, Georgi T, Wendisch VF, Bott M (2007a) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol 75:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kabus A, Niebisch A, Bott M (2007b) Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production. Appl Environ Microbiol 73:861–868PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25PubMedCrossRefGoogle Scholar
  99. Kallio PT, Kim DJ, Tsai PS, Bailey JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208PubMedCrossRefPubMedCentralGoogle Scholar
  100. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kase H, Nakayama K (1974) Mechanism of L-threonine and L-lysine production by analog-resistant mutants of Corynebacterium glutamicum. Agr Biol Chem 38:993–1000Google Scholar
  102. Katsumata R, Ikeda M (1993) Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Bio/Technology 11:921–925Google Scholar
  103. Katsumata R, Kino K (1989) Process for producing amino acids by fermentation. Japan Patent 01,317,395 A (P2,578,488)Google Scholar
  104. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112PubMedCrossRefPubMedCentralGoogle Scholar
  107. Kawano Y, Onishi F, Shiroyama M, Miura M, Tanaka N, Oshiro S, Nonaka G, Nakanishi T, Ohtsu I (2017) Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli. Appl Microbiol Biotechnol 101:6879–6889PubMedCrossRefPubMedCentralGoogle Scholar
  108. Kelle R, Hermann T, Bathe B (2005) L-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 465–488Google Scholar
  109. Kennerknecht N, Sahm H, Yen MR, Patek M, Saier MH Jr, Eggeling L (2002) Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H (2009a) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86(3):911–920. CrossRefPubMedPubMedCentralGoogle Scholar
  112. Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009b) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81:1097–1106PubMedCrossRefGoogle Scholar
  113. Kim HI, Nam JY, Cho JY, Lee CS, Park YJ (2013) Next-generation sequencing-based transcriptome analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol 51:877–880PubMedCrossRefPubMedCentralGoogle Scholar
  114. Kim SY, Lee J, Lee SY (2015) Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng 112:416–421PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kimura E (2003) Metabolic engineering of glutamate production. In: Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, Microbial production of L-amino acids, vol 79. Springer, Berlin, pp 37–58Google Scholar
  116. Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102:583–597PubMedCrossRefGoogle Scholar
  117. Kobayashi M, Itoyama T, Mitani Y, Usui N (2011) Method for producing basic amino acid. European Patent 1182261 B1Google Scholar
  118. Koch DJ, Rückert C, Albersmeier A, Hüser AT, Tauch A, Pühler A, Kalinowski J (2005) The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Mol Microbiol 58:480–494PubMedCrossRefPubMedCentralGoogle Scholar
  119. Komati Reddy G, Lindner SN, Wendisch VF (2015) Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol 81:1996–2005PubMedPubMedCentralCrossRefGoogle Scholar
  120. Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784PubMedPubMedCentralCrossRefGoogle Scholar
  121. Krömer JO, Wittmann C, Schröder H, Heinzle E (2006) Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8:353–369PubMedCrossRefPubMedCentralGoogle Scholar
  122. Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C (2008) Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154:3917–3930PubMedCrossRefGoogle Scholar
  123. Kubota T, Tanaka Y, Takemoto N, Hiraga K, Yukawa H, Inui M (2015) Identification and expression analysis of a gene encoding a shikimate transporter of Corynebacterium glutamicum. Microbiology 161:254–263PubMedCrossRefGoogle Scholar
  124. Kutukova EA, Livshits VA, Altman IP, Ptisyn LR, Zyiatdinov MH, Tokmakova IL, Zakataeva NP (2005) The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634PubMedCrossRefPubMedCentralGoogle Scholar
  125. Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J Biotechnol 158:231–241PubMedCrossRefPubMedCentralGoogle Scholar
  126. Lee HS, Hwang BJ (2003) Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62:459–467PubMedCrossRefPubMedCentralGoogle Scholar
  127. Lee JH, Wendisch VF (2017) Production of amino acids - genetic and metabolic engineering approaches. Bioresour Technol 245:1575–1587PubMedCrossRefPubMedCentralGoogle Scholar
  128. Lee KH, Park JH, Kim TY, Kim KU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149PubMedPubMedCentralCrossRefGoogle Scholar
  129. Lee SY, Shin HS, Park JS, Kim YH, Min J (2010) Proline reduces the binding of transcriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum. Appl Microbiol Biotechnol 86:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  130. Lee CS, Nam JY, Son ES, Kwon OC, Han W, Cho JY, Park YJ (2012) Next-generation sequencing-based genome-wide mutation analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol 50:860–863PubMedCrossRefPubMedCentralGoogle Scholar
  131. Li L, Wada M, Yokota A (2007) A comparative proteomic approach to understand the adaptations of an H+-ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies. Proteomics 7:3348–3357PubMedCrossRefPubMedCentralGoogle Scholar
  132. Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q (2016) Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NAPDH level. Antonie Van Leeuwenhoek 109:1185–1197PubMedCrossRefPubMedCentralGoogle Scholar
  133. Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF (2011a) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77:3571–3581PubMedPubMedCentralCrossRefGoogle Scholar
  134. Lindner SN, Seibold GM, Krämer R, Wendisch VF (2011b) Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Bioeng Bugs 2:291–295PubMedCrossRefPubMedCentralGoogle Scholar
  135. Liu Q, Zhang J, Wei XX, Ouyang SP, Wu Q, Chen GQ (2008) Microbial production of L-glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol 77:1297–1304PubMedCrossRefPubMedCentralGoogle Scholar
  136. Liu Q, Liang Y, Zhang Y, Shang X, Liu S, Wen J, Wen T (2015) YjeH is a novel exporter of L-methionine and branched-chain amino acids in Escherichia coli. Appl Environ Microbiol 81:7753–7766PubMedPubMedCentralCrossRefGoogle Scholar
  137. Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ (2018a) New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum. ACS Synth Biol 7:591–601PubMedCrossRefPubMedCentralGoogle Scholar
  138. Liu H, Fang G, Wu H, Li Z, Ye Q (2018b) L-cysteine production in Escherichia coli based on rational metabolic engineering and modular strategy. Biotechnol J 13:e1700695PubMedCrossRefPubMedCentralGoogle Scholar
  139. Lu SC, Mato JM (2012) S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev 92:1515–1542PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lubitz D, Jorge JM, Pérez-García F, Taniguchi H, Wendisch VF (2016) Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:8465–8474PubMedCrossRefGoogle Scholar
  141. Ma W, Wang J, Li Y, Hu X, Shi F, Wang X (2016) Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L-isoleucine production. Biotechnol Appl Biochem 63:877–885PubMedCrossRefPubMedCentralGoogle Scholar
  142. Ma Q, Zhang Q, Xu Q, Zhang C, Li Y, Fan X, Xie X, Chen N (2017) Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2:87–96PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ma Y, Chen Q, Cui Y, Du L, Shi T, Xu Q, Ma Q, Xie X, Chen N (2018) Comparative genomic and genetic functional analysis of industrial L-leucine- and L-valine-producing Corynebacterium glutamicum strains. J Microbiol Biotechnol 28:1916–1927PubMedCrossRefPubMedCentralGoogle Scholar
  144. Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194PubMedCrossRefGoogle Scholar
  145. Mampel J, Schröder H, Haefner S, Sauer U (2005) Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 68:228–236PubMedCrossRefPubMedCentralGoogle Scholar
  146. Man Z, Rao Z, Xu M, Guo J, Yang T, Zhang X, Xu Z (2016a) Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metab Eng 38:310–321PubMedCrossRefPubMedCentralGoogle Scholar
  147. Man Z, Xu M, Rao Z, Guo J, Yang T, Zhang X, Xu Z (2016b) Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Sci Rep 6:28629PubMedPubMedCentralCrossRefGoogle Scholar
  148. Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol 74:7457–7462PubMedPubMedCentralCrossRefGoogle Scholar
  149. Marx A, Hans S, Mockel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197PubMedCrossRefGoogle Scholar
  150. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  151. Merlin C, Gardiner G, Durand S, Masters M (2002) The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 184:5513–5517PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mitsuhashi S (2014) Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr Opin Biotechnol 26:38–44PubMedCrossRefPubMedCentralGoogle Scholar
  153. Mitsuhashi S, Hayashi M, Ohnishi J, Ikeda M (2006) Disruption of malate:quinone oxidoreductase increases L-lysine production by Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:2803–2806PubMedCrossRefPubMedCentralGoogle Scholar
  154. Mizuno Y, Nagano-Shoji M, Kubo S, Kawamura Y, Yoshida A, Kawasaki H, Nishiyama M, Yoshida M, Kosono S (2016) Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction. Microbiology 5:152–173Google Scholar
  155. Möckel B, Pfefferle W, Huthmacher K, Rückert C, Kalinowski J, Pühler A, Binder M, Greissinger D, Thierbach G (2002) Nucleotide sequences which code for the metY gene. International Patent Application WO 02/18613Google Scholar
  156. Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244:259–266PubMedCrossRefPubMedCentralGoogle Scholar
  157. Morbach S, Sahm H, Eggeling L (1995) Use of feedback-resistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards L-isoleucine. Appl Environ Microbiol 61:4315–4320PubMedPubMedCentralCrossRefGoogle Scholar
  158. Morbach S, Sahm H, Eggeling L (1996) L-isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. App Environ Microbiol 62:4345–4351CrossRefGoogle Scholar
  159. Mori A, Morita M, Morishita K, Sakamoto K, Nakahara T, Ishii K (2015) L-Citrulline dilates rat retinal arterioles via nitric oxide- and prostaglandin-dependent pathways in vivo. J Pharmacol Sci 127:419–423PubMedCrossRefPubMedCentralGoogle Scholar
  160. Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng 14:449–457PubMedCrossRefPubMedCentralGoogle Scholar
  161. Nagano-Shoji M, Hamamoto Y, Mizuno Y, Yamada A, Kikuchi M, Shirouzu M, Umehara T, Yoshida M, Nishiyama M, Kosono S (2017) Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum. Mol Microbiol 104:677–689PubMedCrossRefGoogle Scholar
  162. Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498PubMedPubMedCentralCrossRefGoogle Scholar
  163. Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307PubMedCrossRefGoogle Scholar
  164. Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897PubMedCrossRefPubMedCentralGoogle Scholar
  165. Nonaka G (2018) Bacterial metabolism and fermentative production of cysteine. Bioscience and Industry 76:110–104Google Scholar
  166. Nottebrock D, Meyer U, Krämer R, Morbach S (2003) Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol Lett 218:305–309PubMedCrossRefGoogle Scholar
  167. Ochiai M, Hayashi T, Morita M, Ina K, Maeda M, Watanabe F, Morishita K (2012) Short-term effects of L-citrulline supplementation on arterial stiffness in middle-aged men. Int J Cardiol 155:257–261PubMedCrossRefPubMedCentralGoogle Scholar
  168. Ohnishi J, Ikeda M (2006) Comparisons of potentials for L-lysine production among different Corynebacterium glutamicum strains. Biosci Biotechnol Biochem 70:1017–1020PubMedCrossRefPubMedCentralGoogle Scholar
  169. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223PubMedCrossRefGoogle Scholar
  170. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40°C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75PubMedCrossRefPubMedCentralGoogle Scholar
  171. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274PubMedCrossRefGoogle Scholar
  172. Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85:491–506PubMedCrossRefPubMedCentralGoogle Scholar
  173. Park JH, Lee KH, Kim TY, Lee SY (2007a) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802PubMedPubMedCentralCrossRefGoogle Scholar
  174. Park SD, Lee JY, Sim SY, Kim Y, Lee HS (2007b) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9:327–336PubMedCrossRefPubMedCentralGoogle Scholar
  175. Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun 5:4618PubMedCrossRefPubMedCentralGoogle Scholar
  176. Pátek M (2007) Branched-chain amino acids. In: Wendisch VF (ed) Microbiology monographs, amino acid biosynthesis - pathways, regulation and metabolic engineering. Springer, Berlin, pp 129–162CrossRefGoogle Scholar
  177. Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic mechanisms in vivo. Metab Eng 3:344–361PubMedCrossRefPubMedCentralGoogle Scholar
  178. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300PubMedPubMedCentralGoogle Scholar
  179. Petri K, Walter F, Persicke M, Rückert C, Kalinowski J (2013) A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics 14:713PubMedPubMedCentralCrossRefGoogle Scholar
  180. Qin T, Hu X, Hu J, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum strain ATCC 13032 to produce L-methionine. Biotechnol Appl Biochem 62:563–573PubMedCrossRefPubMedCentralGoogle Scholar
  181. Radmacher E, Eggeling L (2007) The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol 76:587–589PubMedCrossRefPubMedCentralGoogle Scholar
  182. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250PubMedPubMedCentralCrossRefGoogle Scholar
  183. Research and Markets (2018) Amino acids market: global industry trends, share, size, growth, opportunity and forecast 2018–2023.
  184. Rey DA, Pühler A, Kalinowski J (2003) The putative transcriptional regulator McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103:51–65PubMedCrossRefPubMedCentralGoogle Scholar
  185. Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005) The McbR repressor modulated by the effector substance S-adenosylmethionine controls directly the transcription of a regulon involved in Sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887PubMedCrossRefPubMedCentralGoogle Scholar
  186. Riedel C, Rittmann D, Dangel P, Möckel B, Sahm H, Eikmanns BJ (2001) Characterization, expression, and inactivation of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583PubMedPubMedCentralGoogle Scholar
  187. Rieping M, Hermann T (2007) L-threonine. In: Wendisch VF (ed) Microbiology monographs, amino acid biosynthesis - pathways, regulation and metabolic engineering. Springer, Berlin, pp 71–92Google Scholar
  188. Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222PubMedPubMedCentralCrossRefGoogle Scholar
  189. Rückert C, Milse J, Albersmeier A, Koch DJ, Pühler A, Kalinowski J (2008) The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics 9:483PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sanchez S, Rodríguez-Sanoja R, Ramos A, Demain AL (2018) Our microbes not only produce antibiotics, they also overproduce amino acids. J Antibiot 71:26–36. 2018CrossRefGoogle Scholar
  191. Sano K, Shiio I (1971) Microbial production of L-lysine. IV. Selection of lysine-producing mutants from Brevibacterium flavum by detecting threonine sensitivity or halo-forming method. J Gen Appl Microbiol 17:97–113CrossRefGoogle Scholar
  192. Sano K, Yokozeki K, Tamura F, Yasuda N, Noda I, Mitsugi K (1977) Microbial conversion of DL-2-amino-Δ2thiazoline-4-carboxylic acid to L-cysteine and L-cystine: screening of microorganisms and identification of products. Appl Environ Microbiol 34:806–810PubMedPubMedCentralCrossRefGoogle Scholar
  193. Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106:51–58PubMedCrossRefPubMedCentralGoogle Scholar
  194. Sawada K, Zen-In S, Wada M, Yokota A (2010) Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. Metab Eng 12:401–407PubMedCrossRefPubMedCentralGoogle Scholar
  195. Schendzielorz G, Dippong M, Grünberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014) Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3:21–29PubMedCrossRefPubMedCentralGoogle Scholar
  196. Schulte J, Baumgart M, Bott M (2017) Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum. J Biotechnol 258:33–40PubMedCrossRefPubMedCentralGoogle Scholar
  197. Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700PubMedCrossRefPubMedCentralGoogle Scholar
  198. Schwentner A, Feith A, Münch E, Busche T, Rückert C, Kalinowski J, Takors R, Blombach B (2018) Metabolic engineering to guide evolution - creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab Eng 47:31–41PubMedCrossRefPubMedCentralGoogle Scholar
  199. Shi F, Li K, Huan X, Wang X (2013) Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl Biochem Biotechnol 171:504–521PubMedCrossRefPubMedCentralGoogle Scholar
  200. Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem 65:849–859PubMedCrossRefPubMedCentralGoogle Scholar
  201. Shiio I, Toride Y, Sugimoto S (1984) Production of lysine by pyruvate dehydrogenase mutants of Brevibacterium flavum. Agric Biol Chem 48:3091–3098Google Scholar
  202. Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K (2006) Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr 136:529S–532SPubMedCrossRefPubMedCentralGoogle Scholar
  203. Shingu H, Terui G (1971) Studies on process of glutamic acid fermentation at the enzyme level. Part I. on the change of α-ketoglutaric acid dehydrogenase in the course of culture. J Ferment Technol 49:400–405Google Scholar
  204. Sirko A, Hryniewicz M, Hulanicka D, Böck A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172:3351–3357PubMedPubMedCentralCrossRefGoogle Scholar
  205. Sprenger GA (2007) Aromatic amino acids. In: Wendisch VF (ed) Microbiology monographs, Amino acid biosynthesis - pathways, regulation and metabolic engineering. Springer, Berlin, pp 93–127CrossRefGoogle Scholar
  206. Strelkov S, von Elstermann M, Schomburg D (2004) Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol Chem 385:853–861PubMedCrossRefPubMedCentralGoogle Scholar
  207. Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182PubMedCrossRefPubMedCentralGoogle Scholar
  208. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 76:7154–7160PubMedPubMedCentralCrossRefGoogle Scholar
  209. Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M (2016) L-lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng 37:1–10PubMedCrossRefGoogle Scholar
  210. Takumi K, Nonaka G (2014) An L-amino acid-producing bacterium and a method for producing an L-amino acid. European Patent EP 2218729 B1Google Scholar
  211. Takumi K, Nonaka G (2016) Bacterial cysteine-inducible cysteine resistance systems. J Bacteriol 198:1384–1392PubMedPubMedCentralCrossRefGoogle Scholar
  212. Takumi K, Ziyatdinov MK, Samsonov V, Nonaka G (2017) Fermentative production of cysteine by Pantoea ananatis. Appl Environ Microbiol 83:e02502–e02516PubMedPubMedCentralCrossRefGoogle Scholar
  213. Trötschel C, Deutenberg D, Bathe B, Burkovski A, Krämer R (2005) Characterization of methionine export in Corynebacterium glutamicum. J Bacteriol 187:3786–3794PubMedPubMedCentralCrossRefGoogle Scholar
  214. Trötschel C, Follmann M, Nettekoven JA, Mohrbach T, Forrest LR, Burkovski A, Marin K, Krämer R (2008) Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family. Biochemistry 47:12698–12709PubMedCrossRefPubMedCentralGoogle Scholar
  215. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606CrossRefGoogle Scholar
  216. Usuda Y, Hara Y, Kojima H (2017) Toward sustainable amino acid production. In: Yokota A, Ikeda M (eds) Advances in biochemical engineering/biotechnology, Amino acid fermentation, vol 159. Springer, Tokyo, pp 289–304Google Scholar
  217. Utagawa T (2004) Arginine metabolism: enzymology, nutrition, and clinical significance. J Nutr 134:2854S–2857SPubMedCrossRefPubMedCentralGoogle Scholar
  218. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109:2070–2081PubMedCrossRefPubMedCentralGoogle Scholar
  219. Vassilev I, Gießelmann G, Schwechheimer SK, Wittmann C, Virdis B, Krömer JO (2018) Anodic electro-fermentation: anaerobic production of L-lysine by recombinant Corynebacterium glutamicum. Biotechnol Bioeng 115:1499–1508PubMedCrossRefPubMedCentralGoogle Scholar
  220. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52PubMedCrossRefPubMedCentralGoogle Scholar
  221. Vogt M, Krumbach K, Bang WG, van Ooyen J, Noack S, Klein B, Bott M, Eggeling L (2015) The contest for precursors: channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol 99:791–800PubMedCrossRefPubMedCentralGoogle Scholar
  222. Vrljić M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826PubMedCrossRefPubMedCentralGoogle Scholar
  223. Wada M, Takagi H (2006) Metabolic pathways and biotechnological production of L-cysteine. Appl Microbiol Biotechnol 73:48–54PubMedCrossRefPubMedCentralGoogle Scholar
  224. Wada M, Awano N, Haisa K, Takagi H, Nakamori S (2002) Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol Lett 217:103–107PubMedCrossRefPubMedCentralGoogle Scholar
  225. Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72:2959–2965PubMedCrossRefPubMedCentralGoogle Scholar
  226. Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N (2013) Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl Microbiol Biotechnol 97:7587–7596PubMedCrossRefPubMedCentralGoogle Scholar
  227. Wang X, Zhang H, Quinn PJ (2018a) Production of L-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 102:4319–4330PubMedCrossRefPubMedCentralGoogle Scholar
  228. Wang Y, Cao G, Xu D, Fan L, Wu X, Ni X, Zhao S, Zheng P, Sun J, Ma Y (2018b) A novel Corynebacterium glutamicum L-glutamate exporter. Appl Environ Microbiol 84(6):e02691–e02617PubMedPubMedCentralGoogle Scholar
  229. Webster DA (1987) Structure and function of bacterial hemoglobin and related proteins. In: Eichhorn GC, Marzilli LG (eds) Advances in inorganic chemistry. Elsevier, New York, pp 245–265Google Scholar
  230. Wei L, Wang H, Xu N, Zhou W, Ju J, Liu J, Ma Y (2018) Metabolic engineering of Corynebacterium glutamicum for L-cysteine production. Appl Microbiol Biotechnol 103(3):1325–1338. CrossRefPubMedPubMedCentralGoogle Scholar
  231. Wen J, Bao J (2019) Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin-rich corn Stover hydrolysate. Biotechnol Biofuels 12:86PubMedPubMedCentralCrossRefGoogle Scholar
  232. Wendisch VF (2007) Microbiology monographs, amino acid biosynthesis - pathways, regulation and metabolic engineering. Springer, BerlinCrossRefGoogle Scholar
  233. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92PubMedCrossRefPubMedCentralGoogle Scholar
  234. Willis LB, Lessard PA, Sinskey AJ (2005) Synthesis of L-threonine and branched-chain amino acids. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 511–531CrossRefGoogle Scholar
  235. Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl Environ Microbiol 68:5843–5859PubMedPubMedCentralCrossRefGoogle Scholar
  236. Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J (2015) Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. J Biotechnol 207:10–11PubMedCrossRefPubMedCentralGoogle Scholar
  237. Xafenias N, Kmezik C, Mapelli V (2017) Enhancement of anaerobic lysine production in Corynebacterium glutamicum electrofermentations. Bioelectrochemistry 117:40–47PubMedCrossRefPubMedCentralGoogle Scholar
  238. Xie X, Xu L, Shi J, Xu Q, Chen N (2012) Effect of transport proteins on L-isoleucine production with the L-isoleucine-producing strain Corynebacterium glutamicum YILW. J Ind Microbiol Biotechnol 39:1549–1556PubMedCrossRefPubMedCentralGoogle Scholar
  239. Xu J, Zhang J, Guo Y, Zai Y, Zhang W (2013) Improvement of cell growth and L-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses. J Ind Microbiol Biotechnol 40:1423–1432PubMedCrossRefGoogle Scholar
  240. Xu J, Han M, Zhang J, Guo Y, Qian H, Zhang W (2014a) Improvement of L-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. J Chem Technol Biotechnol 89:1924–1933CrossRefGoogle Scholar
  241. Xu J, Han M, Zhang J, Guo Y, Zhang W (2014b) Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids 46:2165–2175PubMedCrossRefPubMedCentralGoogle Scholar
  242. Xu JZ, Zhang JL, Guo YF, Jia QD, Zhang WG (2014c) Heterologous expression of Escherichia coli fructose-1,6-bisphosphatase in Corynebacterium glutamicum and evaluating the effect on cell growth and L-lysine production. Prep Biochem Biotechnol 44:493–509PubMedCrossRefGoogle Scholar
  243. Xu JZ, Wu ZH, Gao SJ, Zhang W (2018a) Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum. Microb Cell Factories 17:105CrossRefGoogle Scholar
  244. Xu JZ, Yang HK, Liu LM, Wang YY, Zhang WG (2018b) Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing L-lysine production. Biotechnol Bioeng 115:1764–1777PubMedCrossRefPubMedCentralGoogle Scholar
  245. Xu JZ, Yang HK, Zhang WG (2018c) NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Crit Rev Biotechnol 38:1061–1076PubMedCrossRefPubMedCentralGoogle Scholar
  246. Xu JZ, Yu HB, Han M, Liu LM, Zhang WG (2019) Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production. J Ind Microbiol Biotechnol 46(7):937–949. CrossRefPubMedPubMedCentralGoogle Scholar
  247. Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 14:542–550PubMedCrossRefPubMedCentralGoogle Scholar
  248. Yin L, Shi F, Hu X, Chen C, Wang X (2013) Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol 114:1369–1377PubMedCrossRefPubMedCentralGoogle Scholar
  249. Yokota A, Ikeda M (2017) Amino acid fermentation. In: Advances in biochemical engineering/biotechnology, vol 159. Springer, BerlinGoogle Scholar
  250. Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058PubMedCrossRefPubMedCentralGoogle Scholar
  251. Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25:123–136PubMedCrossRefPubMedCentralGoogle Scholar
  252. Zhang B, Yu M, Zhou Y, Li Y, Ye BC (2017a) Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Microb Cell Factories 16:158CrossRefGoogle Scholar
  253. Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, Tan T, Zhang Y, Wen T (2017b) A new genome-scale metabolic model of Corynebacterium glutamicum and its application. Biotechnol Biofuels 10:169PubMedPubMedCentralCrossRefGoogle Scholar
  254. Zhang B, Ren LQ, Yu M, Zhou Y, Ye BC (2018a) Enhanced L-ornithine production by systematic manipulation of L-ornithine metabolism in engineered Corynebacterium glutamicum S9114. Bioresour Technol 250:60–68PubMedCrossRefPubMedCentralGoogle Scholar
  255. Zhang B, Yu M, Wei WP, Ye BC (2018b) Optimization of l-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway. Microb Cell Factories 17:91CrossRefGoogle Scholar
  256. Zhang B, Yu M, Zhou Y, Ye BC (2018c) Improvement of L-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114. AMB Express 8:26PubMedPubMedCentralCrossRefGoogle Scholar
  257. Zhang H, Li Y, Wang C, Wang X (2018d) Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep 8:3632PubMedPubMedCentralCrossRefGoogle Scholar
  258. Zhang X, Zhang X, Xu G, Zhang X, Shi J, Xu Z (2018e) Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Appl Microbiol Biotechnol 102:5939–5951PubMedCrossRefPubMedCentralGoogle Scholar
  259. Zhao J, Hu X, Li Y, Wang X (2015) Overexpression of ribosome elongation factor G and recycling factor increases L-isoleucine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:4795–4805PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Agricultural and Life SciencesFaculty of Agriculture, Shinshu UniversityNaganoJapan

Personalised recommendations