Image Processing for Practical Applications

  • Lakhmi C. Jain
  • Margarita N. Favorskaya
Part of the Intelligent Systems Reference Library book series (ISRL, volume 182)


The chapter presents a brief description of chapters on image processing in different practical fields, from radar systems to medical applications. In spite of the fact that images can be multidimensional, additional dimensions extend the possibilities of methods and applications.


Object detection Kalman filter Video watermarking Camera trap Medical diagnostic Data envelopment analysis Landmarks descriptors 


  1. 1.
    Radchenko, Yu., Bulygin, A.: Methods for detecting of structural changes in computer vision systems. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-1: Mathematical Theory, ISRL, vol. 75, pp. 59–90. Springer International Publishing, Switzerland (2015)CrossRefGoogle Scholar
  2. 2.
    Bogoslovsky, A., Zhigulina, I., Maslov, I., Mordovina, T.: Frequency characteristics for video sequences processing. In: Damiani, E., Howlett, R.J., Jain, L.C., Gallo, L., De Pietro, G. (eds.) Smart Innovation, Systems and Technologies, SIST, vol. 40, pp. 149–160. Springer, Switzerland (2015)Google Scholar
  3. 3.
    Saverkin, O.V.: Comparative analysis of digital radar data processing algorithms. In: Proceedings 2nd International Workshop on Radio Electronics and Information Technologies, pp. 120–126 (2017)Google Scholar
  4. 4.
    Favorskaya, M., Pyataeva, A., Popov, A.: Texture analysis in watermarking paradigms. Procedia Comput. Sci. 112, 1460–1469 (2017)CrossRefGoogle Scholar
  5. 5.
    Favorskaya, M.N., Jain, L.C. Savchina E.I.: Perceptually tuned watermarking using non-subsampled shearlet transform. In: Favorskaya, M.N., Jain L.C. (eds.) Computer Vision in Control Systems-3, ISRL, vol. 136, pp. 41–69. Springer International Publishing Switzerland (2018)Google Scholar
  6. 6.
    Zotin, A.: Fast algorithm of image enhancement based on multi-scale retinex. Procedia Comput. Sci. 131, 6–14 (2018)CrossRefGoogle Scholar
  7. 7.
    Zotin, A.G., Proskurin, A.V.: Animal detection using a series of images under complex shooting conditions. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. XLII-2/W12, 249–257 (2019)CrossRefGoogle Scholar
  8. 8.
    Favorskaya, M., Buryachenko, V.: Selecting informative samples for animal recognition in the wildlife. In: Czarnowski, I., Howlett, R., Jain, L. (eds.) Intelligent Decision Technologies SIST, vol. 143, pp. 65–75. Springer, Singapore (2019)Google Scholar
  9. 9.
    Favorskaya, M.N., Pakhirka, A.I.: Animal species recognition in the wildlife based on muzzle and shape features using joint CNN. In: Proceedings of the 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Budapest, Hungary (in print) (2019)Google Scholar
  10. 10.
    Krasheninnikov, V.R., Yashina, A.S., Malenova, O.E.: Markers detection on facies of human biological fluids. Procedia Eng. 201, 312–321 (2017)CrossRefGoogle Scholar
  11. 11.
    Krasheninnikov, V.R., Trubnikova, L.I., Malenova, O.E., Yashina, A.S., Albutova, M.L., Marinova, O.A.: Algorithm for detecting block-like cracks in facies of human biological fluids. Image Process. Earth Remote. Sens. Information Technology and Nanotechnology 2018 (IPERS-ITNT 2018), 193–199 (2018)Google Scholar
  12. 12.
    Krionozhko, V.E., Lychev, A.V.: Algorithms for construction of efficient frontier for nonconvex models on the basis of optimization methods. Dokl. Math. 96(2), 541–544 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: Measurement of returns to scale in radial DEA models. Comput. Math. Math. Phys. 57(1), 83–93 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Krivonozhko, V.E., Førsund, F.R., Lychev, A.V.: Measurement of returns to scale using a non-radial DEA model. Eur. J. Oper. Res. 232(3), 664–670 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Abrosimov, V., Ryvkin, S., Goncharenko, V., Rozhnov, A., Lobanov, I.: Identikit of modifiable vehicles at virtual semantic environment. In: International Conference on Optimization of Electrical and Electronic Equipment and Intl Aegean Conference on Electrical Machines and Power Electronics, pp. 905–910 (2017)Google Scholar
  16. 16.
    Ryvkin, S., Rozhnov, A., Lobanov, I., Chernyshov, L.: Investigation of the stratified model of virtual semantic environment for modifiable vehicles. In: 20th International Symposium on Electrical Apparatus and Technologies, pp. 1–4 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lakhmi C. Jain
    • 1
    • 2
  • Margarita N. Favorskaya
    • 3
  1. 1.University of Technology SydneySydneyAustralia
  2. 2.Liverpool Hope UniversityBelle ValeUK
  3. 3.Institute of Informatics and Telecommunications, Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussian Federation

Personalised recommendations