Advertisement

Hyperbolic Numbers, Genetics and Musicology

  • Sergey V. PetoukhovEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)

Abstract

The article is devoted to applications of 2-dimensional hyperbolic numbers and their algebraic extensions in the form of 2n-dimensional hyperbolic numbers in bioinformatics, algebraic biology and musicology. These applications reveal hidden interconnections between structures of different biological phenomena. It helps to understand living bodies as holistic essences, structural organisation of which has relations with musical harmony, first of all, with Pythagorean musical scales on the basis of the quint ratio 3/2. Presented results are connected with a problem of genetic fundamentals of aesthetics and inborn feeling of harmony. On the basis of these and some other results, the author believes that 2n-dimensional hyperbolic numbers and their matrix representations are a key element for effective algebraic modeling many aspects of inherited structural organisation of biological bodies and for developing algebraic biology. The received results lead to new approaches in bioinformatics, musicological analysis, acoustic biotechnologies and artificial intelligence.

Keywords

Hyperbolic numbers Genetics DNA Tensor product Musical scales Quint ratio 

Notes

Acknowledgments

Some results of this paper have been possible due to a long-term cooperation between Russian and Hungarian Academies of Sciences on the topic “Non-linear models and symmetrologic analysis in biomechanics, bioinformatics, and the theory of self-organizing systems”, where S.V. Petoukhov was a scientific chief from the Russian Academy of Sciences. The author is grateful to participants of this international cooperation and to all the colleagues who discussed the materials of this article with him.

References

  1. 1.
    Kline, M.: Mathematics. The Loss of Certainty. Oxford University Press, New York (1980)zbMATHGoogle Scholar
  2. 2.
    Gsponer, A., Hurni, J.-P.: Quaternions in mathematical physics (2): Analytical bibliography (2008). http://arxiv.org/abs/math-ph/0511092, 3th version from 6 July 2008
  3. 3.
    Vernadsky, V.I.: The chemical structure of the biosphere and its environment. Moscow, Nauka, 205 p. (1965). (in Russian)Google Scholar
  4. 4.
    Hesse, H.: The Glass Bead Game. St Martins Press (2002). ISBN 0312278497, 9780312278496Google Scholar
  5. 5.
    Sethares, W.A.: Tuning, Timbre, Spectrum, Scale, p. 163. Springer, London (2005). ISBN 1-85233-797-4Google Scholar
  6. 6.
    Day-O’Connell, J.: Pentatonicism from the Eighteenth Century to Debussy. University Rochester Press, Rochester (2007). ISBN 978-1-58046-248-8Google Scholar
  7. 7.
    Christidis, A.-F., Arapopoulou, M., Christi, M.: A History of Ancient Greek: From the Beginnings to Late Antiquity. Cambridge University Press, Cambridge (2007). ISBN 978-0-521-83307-3Google Scholar
  8. 8.
    Apel, W.: Harvard Dictionary of Music. Harvard University Press, Cambridge (1969). ISBN 978-0-674-37501-7Google Scholar
  9. 9.
    Olsen, D.A., Sheehy, D.E. (eds.) The Garland Encyclopedia of World Music, Volume 2: South America, Mexico, Central America, and the Caribbean. Taylor & Francis, New York (1998). ISBN 0824060407Google Scholar
  10. 10.
    Todd Titon, J.T.: Worlds of Music: An Introduction to the Music of the World’s Peoples, Shorter Version. Cengage Learning, Boston (1996). ISBN 9780028726120Google Scholar
  11. 11.
    Bhattacharya, S.: Ethno-musicology and India, p. 54. Indian Publications (1968). Accessed 22 June 2012Google Scholar
  12. 12.
    Baines, A.: Woodwind Instruments and Their History. Courier Dover Publications, New York (1991). ISBN 978-0-486-26885-9Google Scholar
  13. 13.
    Petoukhov, S.V.: Matrix genetics, algebras of the genetic code, noise immunity. Moscow, RCD, 316 p. (2008). (in Russian)Google Scholar
  14. 14.
    Petoukhov, S.V., He, M.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications. IGI Global, Hershey (2009)Google Scholar
  15. 15.
    Kantor, I.L., Solodovnikov, A.S.: Hypercomplex Numbers. Springer, Berlin (1989). ISBN 978-0-387-96980-0CrossRefGoogle Scholar
  16. 16.
    Bellman, R.: Introduction to Matrix Analysis. Mcgraw-Hill Book Company, New York (1960)zbMATHGoogle Scholar
  17. 17.
    Petoukhov, S.V.: The system-resonance approach in modeling genetic structures. Biosystems 139, 1–11 (2016)CrossRefGoogle Scholar
  18. 18.
    Petoukhov, S.V.: The concept of resonances in genetics (“resonant bioinformatics”). Selected Proceedings of the VII International Congress “Weak and Super-Weak Fields and Radiations in Biology and Medicine”, St. Petersburg, vol. 7, pp. 1–41 (2015). http://www.biophys.ru/lib/sci/resonance/460-resonance-00001
  19. 19.
    Petoukhov, S.V.: Matrix genetics and algebraic properties of the multi-level system of genetic alphabets. Neuroquantology 9(4), 60–81 (2011)CrossRefGoogle Scholar
  20. 20.
    Bodnar, O.Ya.: Geometry of phyllotaxis. Reports of the Academy of Sciences of Ukraine, №9, pp. 9–15 (1992)Google Scholar
  21. 21.
    Bodnar, O.Ya.: Golden Ratio and Non-Euclidean Geometry in Nature and Art. Publishing House “Sweet”, Lviv (1994)Google Scholar
  22. 22.
    Stakhov, A., Olsen, Sc. (collaborator): Mathematics of Harmony: From Euclid to Contemporary Mathematics and Computer Science, 694 p. World Scientific Pub Co Inc., Singapore (2009). ISBN-10: 981277582X, ISBN-13: 978-9812775825Google Scholar
  23. 23.
    Smolyaninov, V.V.: Spatio-temporal problems of locomotion control. Uspekhi Fizicheskikh Nauk 170(10), 1063–1128 (2000).  https://doi.org/10.3367/UFNr.0170.200010b.1063CrossRefGoogle Scholar
  24. 24.
    Petoukhov, S.V.: Biosolitons, 288p. GP Kimrskaya tipographia, Moscow (1999)Google Scholar
  25. 25.
    Petoukhov, S.: The Genetic Coding System and Unitary Matrices. Preprints 2018, 2018040131.  https://doi.org/10.20944/preprints201804.0131.v2. Accessed 27 Sept 2018
  26. 26.
    Balonin, N.A.: New Course on the Theory of Motion Control (Novyi kurs teorii upravleniia dvizheniem). Saint Petersburg State University, Saint Petersburg (2000). (in Russian)Google Scholar
  27. 27.
    Gladwell, G.M.L.: Inverse Problems in Vibration, 452 p. Kluwer Academic Publishers, London (2004)Google Scholar
  28. 28.
    Rashevskij, P.K.: Tensor Analysis and Riemannian Geometry. Nauka, Moscow (1964)Google Scholar
  29. 29.
    Angadi, S.A., Hatture, S.M.: Biometric person identification system: a multimodal approach employing spectral graph characteristics of hand geometry and palmprint. Int. J. Intell. Syst. Appl. (IJISA) 3, 48–58 (2016)CrossRefGoogle Scholar
  30. 30.
    Sahana, S.K., AL-Fayoumi, M., Mahanti, P.K.: Application of modified ant colony optimization (MACO) for multicast routing problem. Int. J. Intell. Syst. Appl. (IJISA) 4, 43–48 (2016)CrossRefGoogle Scholar
  31. 31.
    Algur, S.P., Bhat, P.: Web video object mining. Int. J. Intell. Syst. Appl. (IJISA) 4, 67–75 (2016)CrossRefGoogle Scholar
  32. 32.
    Hata, R., Akhand, M.A.H., Islam, M.M., Murase, K.: Simplified real-, complex-, and quaternion-valued neuro-fuzzy learning algorithms. Int. J. Intell. Syst. Appl. (IJISA) 10(5), 1–13 (2018).  https://doi.org/10.5815/ijisa.2018.05.01CrossRefGoogle Scholar
  33. 33.
    Awadalla, M.H.A.: Spiking neural network and bull genetic algorithm for active vibration control. Int. J. Intell. Syst. Appl. (IJISA) 10(2), 17–26 (2018).  https://doi.org/10.5815/ijisa.2018.02.02CrossRefGoogle Scholar
  34. 34.
    Abuljadayel, A., Wedyan, F.: An approach for the generation of higher order mutants using genetic algorithms. Int. J. Intell. Syst. Appl. (IJISA) 10(1), 34–35 (2018)CrossRefGoogle Scholar
  35. 35.
    Pavlov, D.G., Panchelyuga, M.S., Panchelyuga, V.A.: On the form of the analogue of the Julia set at zero value of the parameter on the plane of the double variable. Hypercomplex Numbers Geom. Phys. 6(11), 146–151 (2009)Google Scholar
  36. 36.
    Pavlov, D.G., Panchelyuga, M.S., Panchelyuga, V.A.: On the form of analogues of the Julia set on the plane of a double variable. Hypercomplex Numbers Geom. Phys. 6(12), 161–175 (2009)Google Scholar
  37. 37.
    Feynman, R.: The Feynman Lectures on Physics, vol. 4. Perseus Publishing, New York (1998)Google Scholar
  38. 38.
    Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science. Penguin Classics, New York (2000)Google Scholar
  39. 39.
    Russel, B.: A History of Western Philosophy. Book One, Part I, Chapter III. Simon & Schuster/Touchstone, New York (1967)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mechanical Engineering Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations