Advertisement

Development of Models of Quantum Biology Based on the Tensor Product of Matrices

  • Elena FimmelEmail author
  • Sergey V. Petoukhov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)

Abstract

The Kronecker tensor product of matrices is one of the most important operations in quantum mechanics and quantum informatics. The article is devoted to various applications of this mathematical operation for revealing hidden interrelations among molecular-genetic structures and for developing quantum biology and algebraic biology. Special attention is paid to matrix representations of the set of DNA nucleobases and their hydrogen bonds. These representations reveal, in particular, hidden symmetries in alphabets of DNA n-plets and also possibilities of applications of hyperbolic numbers and their extensions for modeling some hidden regularities in long DNA sequences.

Keywords

Genetic code Kronecker product Hydrogen bonds Hyperbolic numbers 

References

  1. 1.
    McFadden, J., Al-Khalili, J.: The origins of quantum biology. Proc. R. Soc. A: Math. Phys. Eng. Sci., 1–13 (2018). https://royalsocietypublishing.org/doi/full/10.1098/rspa.2018.0674
  2. 2.
    Abbott, D., Davies, P.C.W., Pati, A.K. (eds.): Quantum Aspects of Life, foreword by Sir Roger Penrose (2008). ISBN-13: 978-1-84816-253-2Google Scholar
  3. 3.
    Altaisky, M.V., Filatov, F.P.: Genetic information and quantum gas (2001). arXiv:quant-ph/0106123v1. Submitted 22 June 2001
  4. 4.
    Fimmel, E., Petoukhov, S.: Genetic code modeling from the perspective of quantum informatics. In: Hu, Z.B., He, M., Petoukhov S.V. (eds.) Advances in Artificial Systems for Medicine and Education II, pp. 117–126. Springer (2020). ISBN 978-3-030-12081-8Google Scholar
  5. 5.
    Hu, Z.B., Petoukhov, S.V., Petukhova, E.S.: Generalized crystallography, the genetic system and biochemical esthetics. Struct. Chem. 28(1), 354–368 (2017).  https://doi.org/10.1007/s11224-016-0880-0. http://link.springer.com/journal/11224/28/1/page/2CrossRefGoogle Scholar
  6. 6.
    Hu, Z.B., Petoukhov, S.V., Petukhova, E.S.: I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies. Prog. Biophys. Mol. Biol. 131, 354–368 (2017).  https://doi.org/10.1016/j.pbiomolbio.2017.08.018CrossRefGoogle Scholar
  7. 7.
    Hu, Z.B., Petoukhov, S.V., Petukhova, E.S.: On symmetries, resonances and photonic crystals in morphogenesis. Biosystems 173, 165–173 (2018).  https://doi.org/10.1016/j.biosystems.2018.09.004CrossRefGoogle Scholar
  8. 8.
    Igamberdiev, A.U.: Quantum mechanical properties of biosystems: a framework for complexity, structural stability, and transformations. Biosystems 31(1), 65–73 (1993)CrossRefGoogle Scholar
  9. 9.
    Igamberdiev, A.I.: Quantum computation, non-demolition measurements, and reflective control in living systems. BioSystems 77, 47–56 (2004)CrossRefGoogle Scholar
  10. 10.
    Igamberdiev, A.I.: Physical limits of computation and emergence of life. BioSystems 90, 340–349 (2007)CrossRefGoogle Scholar
  11. 11.
    Igamberdiev, A.I.: Objective patterns in the evolving network of non-equivalent observers. BioSystems 92, 122–131 (2008)CrossRefGoogle Scholar
  12. 12.
    Igamberdiev, A.I., Shklovskiy-Kordi, N.E.: Computational power and generative capacity of genetic systems. BioSystems 142–143, 1–8 (2016)CrossRefGoogle Scholar
  13. 13.
    Igamberdiev, A.I., Shklovskiy-Kordi, N.E.: The quantum basis of spatiotemporality in perception and consciousness. Prog. Biophys. Mol. Biol. 130, 15–25 (2017)CrossRefGoogle Scholar
  14. 14.
    Josephson, B.D.: The physics of mind and thought. Preprint (2018).  https://doi.org/10.13140/rg.2.2.36516.32640/2. https://www.researchgate.net/publication/328968105
  15. 15.
    Matsuno, K.: Cell motility as entangled quantum coherence. BioSystems 51, 15–19 (1999)CrossRefGoogle Scholar
  16. 16.
    Matsuno, K.: Quantum mechanics in first, second and third person descriptions. BioSystems 68, 107–118 (2003)CrossRefGoogle Scholar
  17. 17.
    Matsuno, K., Paton, R.C.: Is there a biology of quantum information? BioSystems 55, 39–46 (2000)CrossRefGoogle Scholar
  18. 18.
    Mikheenko, P.: Possible superconductivity in brain. https://arxiv.org/abs/1812.05602. Submitted 13 December 2018
  19. 19.
    Patel, A.: Quantum algorithms and the genetic code. Pramana – J. Phys. 56(2–3), 367–381 (2001). arXiv:quant-ph/0002037CrossRefGoogle Scholar
  20. 20.
    Patel, A.: Testing quantum dynamics in genetic information processing. J. Genet. 80(1), 39–43 (2001)CrossRefGoogle Scholar
  21. 21.
    Patel, A.: Why genetic information processing could have a quantum basis. J. Biosci. 26(2), 145–151 (2001)CrossRefGoogle Scholar
  22. 22.
    Penrose, R.: Shadows of the Mind: A Search for the Missing Science of Consciousness, 480 p. Oxford University Press, New York (1996)Google Scholar
  23. 23.
    Penrose, R.: Your eyes are not meant for seeing. Community (2019). https://thriveglobal.com/stories/your-eyes-are-not-meant-for-seeing/
  24. 24.
    Petoukhov, S.V.: The system-resonance approach in modeling genetic structures. Biosystems 139, 1–11 (2016). http://petoukhov.com/PETOUKHOV_ARTICLE_IN_BIOSYSTEMS.pdfCrossRefGoogle Scholar
  25. 25.
    Petoukhov, S.V.: The genetic coding system and unitary matrices. Preprints 2018, 2018040131 (2018).  https://doi.org/10.20944/preprints201804.0131.v2
  26. 26.
    Petoukhov, S.V.: The rules of long DNA-sequences and tetra-groups of oligonucleotides, 5th version,, 159 p. 8 October 2018. arXiv:1709.04943v5
  27. 27.
    Petoukhov, S.V.: Structural connections between long genetic and literary texts. Preprints 2018, 2018120142 (2019).  https://doi.org/10.20944/preprints201812.0142.v2. https://www.preprints.org/manuscript/201812.0142/v2
  28. 28.
    Petoukhov, S.V.: Connections between long genetic and literary texts. The quantum-algorithmic modelling. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Computer Science for Engineering and Education II, ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol. 938, pp. 534–543. Springer, Cham. (2019).  https://doi.org/10.1007/978-3-030-16621-2_50. https://link.springer.com/chapter/10.1007/978-3-030-16621-2_50#citeas (online)Google Scholar
  29. 29.
    Bellman, R.: Introduction to Matrix Analysis, 351 p. Mcgraw-Hill Book Company, Inc., New-York (1960)Google Scholar
  30. 30.
    Rumer, Yu.B.: Systematization of the codons of the genetic code. Dokl. Akad. Nauk SSSR 183(1), 225–226 (1968). (in Russian)Google Scholar
  31. 31.
    Fimmel, E., Strüngmann, L.: Yury Borisovich Rumer and his ‘biological papers’ on the genetic code. Phil. Trans. R. Soc. A 374, 20150228 (2016)CrossRefGoogle Scholar
  32. 32.
    Petoukhov, S.V.: Hadamard matrices and quint matrices in matrix presentations of molecular genetic systems. Symmetry: Cult. Sci. 16(3), 247–266 (2005)MathSciNetGoogle Scholar
  33. 33.
    Petoukhov, S.V.: Matrix genetics, algebras of the genetic code, noise immunity, 316 p. RCD (2008). (in Russian)Google Scholar
  34. 34.
    Petoukhov, S.V., He, M.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications, 271 p. IGI Global, Hershey (2009)Google Scholar
  35. 35.
    Petoukhov, S.V.: Matrix genetics and algebraic properties of the multi-level system of genetic alphabets. Neuroquantology 9(4), 60–81 (2011)CrossRefGoogle Scholar
  36. 36.
    Gazale, M.: Gnomon. From Pharaons to Fractals. Princeton University Press, Princeton (1999)Google Scholar
  37. 37.
    Baish, J.W., Jain, R.K.: Fractals and cancer. Cancer Res. 60, 3683–3688 (2000)Google Scholar
  38. 38.
    Harkin, A.A., Harkin, J.B.: Geometry of generalized complex numbers. Math. Mag. 77(2), 118–129 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Fimmel, E., Gumbel, M., Karpuzoglu, A., Petoukhov, S.: On comparing composition principles of long DNA sequences with those of random ones. Biosystems 180, 101–108 (2019)CrossRefGoogle Scholar
  40. 40.
    Petoukhov, S.: Nucleotide epi-chains and new nucleotide probability rules in long DNA sequences. Preprints 2019 (2019).  https://doi.org/10.20944/preprints201904.0011.v2
  41. 41.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  42. 42.
    Mousa, H.M.: DNA-genetic encryption technique. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(7), 1–9 (2016).  https://doi.org/10.5815/ijcnis.2016.07.01CrossRefGoogle Scholar
  43. 43.
    Abo-Zahhad, M., Ahmed, S.M., Abd-Elrahman, S.A.: Genomic analysis and classification of exon and intron sequences using DNA numerical mapping techniques. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 4(8), 22–36 (2012)Google Scholar
  44. 44.
    Hata, R., Akhand, M.A.H., Islam, Md.M, Murase, K.: Simplified real-, complex-, and quaternion-valued neuro-fuzzy learning algorithms. Int. J. Intell. Syst. Appl. (IJISA) 10(5), 1–13 (2018).  https://doi.org/10.5815/ijisa.2018.05.01CrossRefGoogle Scholar
  45. 45.
    Awadalla, M.H.A.: Spiking neural network and bull genetic algorithm for active vibration control. Int. J. Intell. Syst. Appl. (IJISA) 10(2), 17–26 (2018).  https://doi.org/10.5815/ijisa.2018.02.02CrossRefGoogle Scholar
  46. 46.
    Abuljadayel, A., Wedyan, F.: An approach for the generation of higher order mutants using genetic algorithms. Int. J. Intell. Syst. Appl. (IJISA) 10(1), 34–35 (2018)Google Scholar
  47. 47.
    Kumar, A., Sharma, R.: A genetic algorithm based fractional fuzzy PID controller for integer and fractional order systems. Int. J. Intell. Syst. Appl. (IJISA) 10(5), 23–32 (2018)Google Scholar
  48. 48.
    Pauling, L.: The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An introduction to Modern Structural Chemistry, 2nd edn, 664 p. Oxford University Press, London (1940)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mannheim University of Applied SciencesMannheimGermany
  2. 2.Mechanical Engineering Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations