Advertisement

Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes

  • Ulises Reno
  • Luciana Regaldo
  • Ana María Gagneten
Chapter
  • 29 Downloads
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)

Abstract

Agro-industrial production generates large volumes of effluents with a high content of solids, nutrients, organic matter, and microorganisms. These effluents can negatively modify natural environments that receive them by surface runoff or infiltration through the soil, with possible damage to the population’s health. The objective of the circular economy is to maintain—as long as possible—the materials, products, and resources used in the production system to diminish, in this way, contaminating wastes. The “biologization” of industrial processes using the purification capacity of microalgae to decontaminate wastewaters has emerged in recent years. It offers two benefits, the production of biomass for different uses and the production of cleaner effluents. After microalgal treatments, ecotoxicity tests are used to assess the effectiveness of decontamination processes. In addition, bioassays indicate how long it is necessary to continue the decontamination process, i.e., when the concentration with no toxic effects has been reached, thus reducing unnecessary costs.

In this chapter, we will discuss (1) the use of microalgae for the treatment of agro-industrial wastewater derived from dairy, swine, and agrochemicals (fertilizers, pesticides) production. (2) The relevance of a cleaner remediation technology for water contaminated with glyphosate: the advanced oxidation process (AOP), using the microalgae Chlorella vulgaris as a test organism. (3) The importance of monitoring environmental pollution in freshwater aquatic ecosystems through ecotoxicology tests using nontarget species.

Keywords

Agro-industrial wastewater Microalgae Advanced oxidation process (AOP) Ecotoxicity 

References

  1. A UN-Water Analytical Brief (2015) http://www.unwater.org/
  2. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albeliovich A (2004) Water purification: algae in wastewater oxidation ponds. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 430–438Google Scholar
  4. Andrade CER, Vera AL, Cárdenas CH, Morales ED (2009) Biomass production of microalga Scenedesmus sp. with wastewater from fishery. Rev Téc Ing Univ Zulia 32(2):126–134Google Scholar
  5. Araújo SC, Garcia VMT (2005) Growth and biochemical composition of the diatom Chaetoceros cf wighamii brightwell under different temperatures, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246:405–412CrossRefGoogle Scholar
  6. Baglieri A, Sidella S, Barone V, Fragalà F, Silkina A, Nègre M, Gennari M (2016) Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ Sci Pollut Res Int.  https://doi.org/10.1007/s11356-016-6996-3 PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bayón B, Berti IR, Gagneten AM, Castro GR (2018) Biopolymers from wastes to high-value products in biomedicine. In: Singhania R, Agarwal R, Kumar R, Sukumaran R (eds) Waste to wealth. Energy, environment, and sustainability. Springer, SingaporeGoogle Scholar
  8. Benavides J, Rito-Palomares M (2008) Aplicación genérica de sistemas de dos fases acuosas Polientilenglicol – Sal para el desarrollo de procesos de recuperación primaria de compuestos biológicos. Rev Mex Ing Quím 7:99–111Google Scholar
  9. Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cervantes FJ, Saldívar-Cabrales J, Yescas JF (2007) Estrategias para el aprovechamiento de desechos porcinos en la agricultura. Rev Latinoam Recursos Nat 3(1):3–12Google Scholar
  11. Cheah WY, Pau LS, Joon CJ, Chang JS, Ling TC (2018) Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Convers Manag 174:430–438CrossRefGoogle Scholar
  12. Cho HU, MoKim Y, Park JM (2017) Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresour Technol 228:290–297PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chong AMY, Wong YS, Tam NFY (2000) Performance of diferent microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257PubMedCrossRefPubMedCentralGoogle Scholar
  14. Collins Odjadjare E, Mutanda T, Chen YF, Olaniran AO (2018) Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production. Water 10(8):977.  https://doi.org/10.3390/w10080977 CrossRefGoogle Scholar
  15. de-Bashan LE, Hernandez JP, Bashan Y (2015) Interaction of Azospirillum spp. with microalgae: a basic eukaryotic–prokaryotic model and its biotechnological applications. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, ChamGoogle Scholar
  16. De Grandis MJ, Visintini MG (2015) Manejo del efluente en el tambo. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, CorodobaGoogle Scholar
  17. Diez M (2012) Efluentes de tambo, mucho más que residuos. Producir XXI Bs As 20(251):30–36Google Scholar
  18. Dominic VJ, Murali S, Nisha MC (2009) Phycoremediation efficiency of three algae Chlorella vulgaris, Synechocystis salina and Gloeocapsa gelatinosa. Acad Rev 16(1–2):138–146Google Scholar
  19. Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J, Zachleder V (2010) Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Convers Manag 51:606–611CrossRefGoogle Scholar
  20. Fernández-Alba A, Hernando D, Agüera A, Cáceres J, Malato S (2002) Toxicity assays: a way for evaluating AOPs efficiency. Water Res 36:4255–4262PubMedCrossRefPubMedCentralGoogle Scholar
  21. González-López CV, Acién FG, Fernández-Sevilla JM, Molina E (2011) Uso de microalgas como alternativa a lastecnologías disponibles de mitigación de emisiones antropogénicas de CO2. Rev Latinoam Biotecnol Ambient Algal 2(2):93–106Google Scholar
  22. Hanumantha Rao P, Ranjith Kumar R, Raghavan B, Subramanian VV, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather processing chemical manufacturing facility. Water SA 37:7–14Google Scholar
  23. Herrero MA, Gil SB (2008) Consideraciones ambientales de la intensificación en la producción animal. Ecol Austral 18(3):273–289Google Scholar
  24. Hussein MH, Abdullah AM, Badr NL, Din L, Mishaqa ES (2017) Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides. J Fertil Pestic 8:1.  https://doi.org/10.4172/2471-2728.1000177 CrossRefGoogle Scholar
  25. Iannacone J, Gutierrez A (1999) Ecotoxicidad de los Agroquímicos Lindano y Clorpirifos sobre el nematodo Panagrellus, la microalga Chlorella y el ensayo con Allium. Agric Téc 59:85–95Google Scholar
  26. Infante C, Angulo E, Zárate A, Florez JZ, Barrios F, Zapata C (2012) Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Av Cien Ing 3(2):159–164Google Scholar
  27. Jayakumar S, Mashitah M, Yusoff MH, Ab Rahim G, Pragas M, Govindan N (2017) The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew Sust Energ Rev 72:33–47CrossRefGoogle Scholar
  28. Johnstone C, Day JD, Staines E, Benson EE (2006) An in vitro oxidative stress test for determining pollutant tolerance in algae. Ecol Indic 6:770–779CrossRefGoogle Scholar
  29. Junges CM, Vidal EE, Attademo AM, Mariani M, Cardell L, Negro AC, Cassano A, Peltzer P, Lajmanovich R, Zalazar CS (2013) Effectiveness evaluation of glyphosate oxidation employing the H2O2/ UVC process: toxicity assays with Vibrio fischeri and Rhinella arenarum tadpoles. J Environ Sci Health Bull Am Meteorol Soc 48:163–170CrossRefGoogle Scholar
  30. Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour Technol 98(11):2220–2228PubMedCrossRefGoogle Scholar
  31. Komolafe O, Velasquez SB, Monje-Ramirez I, Nogueza IY, Harvey AP, Ledesma MTO (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304PubMedCrossRefGoogle Scholar
  32. Koutra E, Economou CN, Tsafrakidou P, Kornaros M (2018) Bio-based products from microalgae cultivated in digestates. Trends Biotechnol 36(8):819–833PubMedCrossRefGoogle Scholar
  33. Kraaijenhagen C, van Oppen C, Bocken N (2016) Circular business: collaborate and circulate. Editor Chris Bernasco. Edición 4. ISBN 908249020X, 9789082490206. https://kenniskaarten.hetgroenebrein.nl/en/knowledge-map-circular-economy/what-is-the-definition-a-circular-economy/
  34. Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8:163CrossRefGoogle Scholar
  35. León C, Chaves D (2010) Tratamiento de residual vacuno utilizando microalgas, la lenteja de agua Lemna aequinoctiales y un humedal subsuperficial en Costa Rica. Rev Latinoam Biotecnol Ambient Algal 1(2):155–177Google Scholar
  36. Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates—the ability of Spirulinas sp. to degrade glyphosate. Enzym Microb Technol 41:286–291CrossRefGoogle Scholar
  37. Lipok J, Wieczorek D, Jewginski M, Kafarski P (2009) Prospects of in vivo 31P NMR method in glyphosate degradation studies in whole cell system. Enzym Microb Technol 44:11–16CrossRefGoogle Scholar
  38. Lourenço SO (2006) Cultivo de Microalgas Marinhas: Princípios e Aplicações. Rima, São Carlos, p 606Google Scholar
  39. Lourenço SO, Marquez UML, Mancini-Filho J, Barbarino E, Aidar E (1997) Changes in biochemical profile of Tetraselmis gracilis I comparision of two culture media. Aquaculture 148:153–158CrossRefGoogle Scholar
  40. Ma X, Zheng H, Addy M, Anderson E, Liu Y, Chen P, Ruan R (2016) Cultivation of in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production. Bioresour Technol 207:252–261PubMedCrossRefPubMedCentralGoogle Scholar
  41. Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives: a mini review. Energy 78:104–113CrossRefGoogle Scholar
  42. Manassero A, Passalia C, Negro AC, Cassano AE, Zalazar CS (2010) Glyphosate degradation in water employing the H2O2/UV process. Water Res 44:3875–3882PubMedCrossRefPubMedCentralGoogle Scholar
  43. Marchello AE, Lombardi AT, Dellamano-Oliveira MJ, Clovis WO (2015) Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Braz J Microbiol 46(1):75–84PubMedPubMedCentralCrossRefGoogle Scholar
  44. Massoud AH, Derbalah AS, Belal E-SB (2008) Microbial detoxification of metalaxyl in aquatic system. J Environ Sci 20:262–267CrossRefGoogle Scholar
  45. Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mehta SK, Gaur JP (2001) Concurrent sorption of Ni2+ and Cu2+ by Chlorella vulgaris from a binary metal solution. Appl Microbiol Biotechnol 55:379–382PubMedCrossRefGoogle Scholar
  47. Mendez-Suaza L, Albarracin I, Cravero M, Salomón R (2011) Crecimiento de Scenedesmus quadricauda en efluentes cloacales de la ciudad de Trelew, Chubut, Argentina. Rev Cuba Invest Pesq 28(1):36–41Google Scholar
  48. Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93PubMedCrossRefGoogle Scholar
  49. Miao M, Yao X, Shu L, Yan Y, Wang Z, Li N, Cui X, Lin Y, Kong Q (2016) Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. Int Biodeterior Biodegradation 113:120–125CrossRefGoogle Scholar
  50. Milhazes-Cunha H, Otero A (2017) Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal Res 24(Part B):416–424CrossRefGoogle Scholar
  51. Morales-Amaral M, Gómez-Serrano C, Acién FG (2015) Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res 12:99–108CrossRefGoogle Scholar
  52. Oswald WJ (1988) Microalgae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394Google Scholar
  53. Park JR, Craggs Shilton A (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42PubMedCrossRefPubMedCentralGoogle Scholar
  54. Plata V, Kafarov V, Nelson N (2009) Desarrollo de una metodología de transesterificación de aceite en la cadena de producción de biodiesel a partir de microalgas. Prospect 7:35–4.1Google Scholar
  55. Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425PubMedCrossRefPubMedCentralGoogle Scholar
  56. Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304Google Scholar
  57. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648PubMedCrossRefPubMedCentralGoogle Scholar
  58. Quevado OC, Morales VS, Acosta CA (2008) Scenedesmus sp. growth in diferent culture mediums for microalgal protein production. Vitae 15:25–31Google Scholar
  59. Rachlin JW, Grosso A (1991) The effects of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity. Arch Environ Contam Toxicol 20:505–508PubMedCrossRefPubMedCentralGoogle Scholar
  60. Rawat I, Ranjith-Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424CrossRefGoogle Scholar
  61. Regaldo L (2013) Efecto de metales pesados y plaguicidas sobre organismos planctónicos de diferente nivel trófico y eficacia de acumulación por microalgas. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa FeGoogle Scholar
  62. Renaud SM, Thinh L, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170(2):147–159CrossRefGoogle Scholar
  63. Reno U (2017) Contaminación acuática por glifosato: efecto sobre especies nativas y eficiencia de los procesos de remoción. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa FeGoogle Scholar
  64. Reno U, Gutierrez MF, Longo M, Vidal E, Regaldo L, Negro A, Mariani M, Zalazar C, Gagneten AM (2015) Microcrustaceans: biological models to evaluate a remediation process of glyphosate-based formulations. Water Air Soil Pollut 226:349.  https://doi.org/10.1007/s11270-015-2616-y CrossRefGoogle Scholar
  65. Reno U, Regaldo L, Vidal E, Mariani M, Zalazar C, Gagneten AM (2016) Water polluted with glyphosate formulations: effectiveness of a decontamination process using Chlorella vulgaris growing as bioindicator. J Appl Phycol 28(4):2279–2286CrossRefGoogle Scholar
  66. Reno U, Regaldo L, Romero N, Gervasio S, Gagneten AM (2018) Chlorella vulgaris as a biological matrix for dairy effluent remediation. J Algal Biomass Utln 9(4):52–60Google Scholar
  67. Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45(15):4311–4340PubMedCrossRefPubMedCentralGoogle Scholar
  68. Rodrıguez MC, Barsant L, Passareli V, Evangelista V, Conforti C, Gualtieri P (2007) Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ Res 105:234–239PubMedCrossRefPubMedCentralGoogle Scholar
  69. Salman JM, Abdul-Adel A (2015) Potential use of cyanophyta species Oscillatoria limnetica in bioremediation of organophosphorus herbicide glyphosate. Mesop Environ J 1(4):15–26Google Scholar
  70. Salomon A, Abarracion I, Pio G (2003) Sensibilidad de Chlorella vulgaris y Scenedesmus quadricauda a la Cipermetrina. Fase preliminar. Retel 7:1–15Google Scholar
  71. Sanchez L, Garza González T, Almaguer Cantú V, Sáenz Tavera I, Liñan Monte A (2008) Estudio cinético e isotermas de absorción de Ni (II) y Zn (II) utilizando biomasa de alga Chlorella sp. inmovilizada. Cienc UANL 2:198–177Google Scholar
  72. Sandifer P, Sutton-Grier A, Ward B (2015) Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: opportunities to enhance health and biodiversity conservation. Ecosyst Serv 1:1–15CrossRefGoogle Scholar
  73. Schocken MJ, Mao J, Schabacker DJ (1997) Microbial transformations of the fungicide cyprodinil (CGA-219417). J Agric Food Chem 45:3647–3651CrossRefGoogle Scholar
  74. Scragg AH, Morrison J, Shales SW (2003) The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzym Microb Technol 33:884–889CrossRefGoogle Scholar
  75. Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzym Microb Technol 27:312–318CrossRefGoogle Scholar
  76. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727PubMedCrossRefGoogle Scholar
  77. Solomon KR, Baker DB, Richards RP, Dixon DR, Klaine SJ, LaPoint TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP, Hall LW, Williams WM (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–74CrossRefGoogle Scholar
  78. Stiles WAV, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Fuentes Grünewald C, Lovitt R, Chaloner T, Bull A, Morris C, Llewellyn CA (2018) Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol 267:732–742PubMedCrossRefGoogle Scholar
  79. Stringheta PC, Nachtigall AM, Oliveira TT, Ramos AM, Santána HMP, Goncalves MP (2006) Luteìna: propiedades antioxidantes e benefìcios à saúde. Alim Nutr 17:229–238Google Scholar
  80. Székács I, Fejes Á, Klátyik S, Takács E, Patkó D, Pomóthy J, Mörtl M, Horváth R, Madarász E, Darvas B, Székács A (2014) Environmental and toxicological impacts of glyphosate with its formulating adjuvant. Int J Biol Vet Agric Food Eng 8(3):212–218Google Scholar
  81. Tang JL, Hoagland KD, Siegfried BD (1998) Uptake and bioconcentration of atrazine by selected freshwater algae. Environ Toxicol Chem 17(6):1085–1090CrossRefGoogle Scholar
  82. Thies F, Backhaus T, Bossmann B, Grimme H (1996) Xentibiotic transformation in unicellular green algae—involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon. Plant Physiol 112:361–370PubMedPubMedCentralCrossRefGoogle Scholar
  83. United Nations Organization for Agriculture and Food (FAO) (2013) Future expansion of soybean 2005–2014 implications for food security, sustainable rural development and agricultural policies in the countries of Mercosur and Bolivia. Synthesis document. Regional Office for Latin America and the Caribbean, SantiagoGoogle Scholar
  84. United Nations Organization for Agriculture and Food (FAO) and National Institute of Agricultural Technology Argentina (INTA) (2012) Buenas Prácticas Pecuarias (BPP) para la producción y comercialización porcina familiar. Ministerio de Agricultura, ganadería y pesca de la Nación, Buenos Aires, p 277Google Scholar
  85. Vargas L, Cárdenas FCH, Hernández M, Araujo I, Yabroudi S, López F (2004) Efecto de las microalgas en la remoción de los compuestos nitrogenados presentes en la laguna facultativa de una planta de tratamiento de aguas residuales. In: Hernández-Reyes BM, Rodríguez-Palacio MC, Lozano-Ramírez C, Castilla-Hernández P (eds) Remoción de nutrientes por tres cultivos de microalgas libres e inmovilizados. Rev Latinoam Biotecnol Amb Algal 3(1):80–94Google Scholar
  86. Vera G, Tam G, Pinto E (2009) Ecotoxicological effects of crude oil, diesel 2 and kerosene on the population growth of the microalgae Chaetoceros gracilis Schutt. Ecol Apl 8:1–7CrossRefGoogle Scholar
  87. Vicari MP (2012) Efluentes en producción porcina en Argentina: generación, impacto ambiental y posibles tratamientos. Trabajo Final de Ingeniería en Producción Agropecuaria. Facultad de Ciencias Agrarias, Universidad Católica ArgentinaGoogle Scholar
  88. Vidal E, Negro A, Cassano A, Zalazar C (2015) Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process. Photochem Photobiol Sci 14:366–377PubMedCrossRefGoogle Scholar
  89. Von Döhren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecol Indic 52:490–497.  https://doi.org/10.1016/j.ecolind.2014.12.027 CrossRefGoogle Scholar
  90. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan R (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wang Y, Guo W, Yen HW, Ho SH, Lo YC, Cheng CL, Ren N, Chang JS (2015) Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol 198:619–625PubMedCrossRefPubMedCentralGoogle Scholar
  92. Weiner JA, DeLorenzo ME, Fulton MH (2004) Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species. Aquat Toxicol 68(2):121–128PubMedCrossRefPubMedCentralGoogle Scholar
  93. World Health Organization (WHO) (1994) Glyphosate: environmental health criteria 159. World Health Organization, Geneva. http://www.inchem.org/documents/ehc/ehc/ehc159.htm
  94. Wu RSS (1999) Eutrophication, water borne pathogens and xenobiotic compounds: environmental risks and challenges. Mar Pollut Bull 39:11–22CrossRefGoogle Scholar
  95. Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 34(4):264–275PubMedCrossRefPubMedCentralGoogle Scholar
  96. Xie B, Gong W, Tang X, Bai L, Guo Y, Wang J, Zhao J, Fan J, Li G, Liang H (2019) Blending high concentration of anaerobic digestion effluent and rainwater for cost-effective Chlorella vulgaris cultivation in the photobioreactor. Chem Eng J 360:861–865CrossRefGoogle Scholar
  97. Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res 21(1):6.  https://doi.org/10.1186/2241-5793-21-6 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ulises Reno
    • 1
    • 2
  • Luciana Regaldo
    • 1
    • 2
  • Ana María Gagneten
    • 1
  1. 1.Laboratorio de EcotoxicologiaUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.Consejo Nacional de Investigaciones CientÚficas y Técnicas (CONICET)Santa FeArgentina

Personalised recommendations