Advertisement

Proteomics of Lignocellulosic Substrates Bioconversion in Anaerobic Digesters to Increase Carbon Recovery as Methane

  • Alicia Guadalupe Talavera-Caro
  • María Alejandra Sánchez-Muñoz
  • Inty Omar Hernández-De Lira
  • Lilia Ernestina Montañez-Hernández
  • Ayerim Yedid Hernández-Almanza
  • Jésus Antonio Morlett-Chávez
  • María de las Mercedes Esparza-Perusquia
  • Nagamani BalagurusamyEmail author
Chapter
  • 36 Downloads
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)

Abstract

Anaerobic digestion (AD) is a cost-effective treatment for management of lignocellulosic substrates, viz., agricultural wastes and animal manures, which also aids in generation of methane as biofuel. Although the application of AD technology is increasing, one of the major limitations of the process is that the rate of fermentation is higher than the rate of methanogenesis, which significantly affects process stability and methane yield. Normally, the souring of digesters can be observed after 2–4 weeks after the initiation of the volatile fatty acids accumulation, which makes it difficult for early detection and consequently resulting in acidification of digesters. Of late, metagenomic approaches are gaining importance due to their ability to reveal the microbial diversity and their dynamics in a relatively short time. However, their functional nature could not be clearly explained due to the lack of data on their activity. Recent advances in proteomic studies show its potential as a complementary technology to metagenomic studies for efficient management of digesters. Metaproteomic analyses aid in identifying a shift in metabolic paths and in metabolic networks under stress conditions. This provides insights on functionality, microbial interactions, and provides data on spatiotemporal variations and their dynamics of proteins crucial for efficient performance of the digester. Besides, this technique has led to identify novel phylotypes with novel functions among the microbial communities of the anaerobic digesters, which suggest the potential of proteomics in bioprospection of novel enzymes for industrial purposes. How proteomics along with metagenomics and transcriptomics data could aid in early detection of disturbances in the digesters helps in formulating recovery strategies as well as to increase the methane content of biogas will be discussed in this chapter.

Keywords

Anaerobic digestion Metabolic networks Methane Proteomics 

References

  1. Abendroth C, Simeonov C, Peretó J, Antúnez O, Gavidia R, Luschnig O, Porcar M (2017) From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures. Biotechnol Biofuels 10:171.  https://doi.org/10.1186/s13068-017-0859-0 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abram F, Gunnigle E, O’Flaherty V (2009) Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis 30:4149–4151.  https://doi.org/10.1002/elps.200900474 CrossRefPubMedGoogle Scholar
  3. Abram F, Enright A-M, O’Reilly J, Botting CH, Collins G, O’Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110:1550–1560.  https://doi.org/10.1111/j.1365-2672.2011.05011.x CrossRefPubMedGoogle Scholar
  4. Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 06:205.  https://doi.org/10.4236/abb.2015.63020 CrossRefGoogle Scholar
  5. Aguinaga Casañas MA, Rangkasenee N, Krattenmacher N, Thaller G, Metges CC, Kuhla B (2015) Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows. J Dairy Sci 98:4074–4083.  https://doi.org/10.3168/jds.2015-9310 CrossRefPubMedGoogle Scholar
  6. Ahring BK, Biswas R, Ahamed A, Teller PJ, Uellendahl H (2015) Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour Technol 175:182–188.  https://doi.org/10.1016/j.biortech.2014.10.082 CrossRefPubMedGoogle Scholar
  7. Akuzawa M, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol 61:595–605.  https://doi.org/10.1007/s00248-010-9788-1 CrossRefPubMedGoogle Scholar
  8. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark Esbjerg, EsbjergGoogle Scholar
  9. Angelidaki I, Ellegaard L, Ahring BK (2003) Applications of the anaerobic digestion process. Adv Biochem Eng Biotechnol 82:1–33.  https://doi.org/10.1007/3-540-45838-7_1 CrossRefPubMedGoogle Scholar
  10. Angelidaki I, Boe K, Ellegaard L (2005) Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci Technol 52:189–194.  https://doi.org/10.2166/wst.2005.0516 CrossRefPubMedGoogle Scholar
  11. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. Methods Enzymol 494:327–351.  https://doi.org/10.1016/B978-0-12-385112-3.00016-0 CrossRefPubMedGoogle Scholar
  12. Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15:4295–4301.  https://doi.org/10.1016/j.rser.2011.07.121 CrossRefGoogle Scholar
  13. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156.  https://doi.org/10.1016/j.apenergy.2014.02.035 CrossRefGoogle Scholar
  14. Barua S, Dhar BR (2017) Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour Technol 244:698–707.  https://doi.org/10.1016/j.biortech.2017.08.023 CrossRefPubMedGoogle Scholar
  15. Bize A, Cardona L, Desmond-Le Quéméner E, Battimelli A, Badalato N, Bureau C, Madigou C, Chevret D, Guillot A, Monnet V, Godon J-J, Bouchez T (2015) Shotgun metaproteomic profiling of biomimetic anaerobic digestion processes treating sewage sludge. Proteomics 15:3532–3543.  https://doi.org/10.1002/pmic.201500041 CrossRefPubMedGoogle Scholar
  16. Bourven I, Casellas M, Buzier R, Lesieur J, Lenain J-F, Faix A, Bressolier P, Maftah C, Guibaud G (2017) Potential of DGT in a new fractionation approach for studying trace metal element impact on anaerobic digestion: the example of cadmium. Int Biodeterior Biodegrad 119:188–195.  https://doi.org/10.1016/j.ibiod.2016.11.007 CrossRefGoogle Scholar
  17. Bräsen C, Esser D, Rauch B, Siebers B (2014) Carbohydrate metabolism in archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 78:89–175.  https://doi.org/10.1128/MMBR.00041-13 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Braun R, Weiland P, Wellinger A (2008) Biogas from energy crop digestion. IEA Bioenergy Task 37:1–20Google Scholar
  19. Capson-Tojo G, Ruiz D, Rouez M, Crest M, Steyer J-P, Bernet N, Delgenès J-P, Escudié R (2017) Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste. Bioresour Technol 245:724–733.  https://doi.org/10.1016/j.biortech.2017.08.149 CrossRefPubMedGoogle Scholar
  20. Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397.  https://doi.org/10.1016/j.biortech.2015.09.007 CrossRefPubMedGoogle Scholar
  21. Cesarino I, Araújo P, Domingues Júnior AP, Mazzafera P (2012) An overview of lignin metabolism and its effect on biomass recalcitrance. Braz J Bot 35:303–311.  https://doi.org/10.1590/S0100-84042012000400003 CrossRefGoogle Scholar
  22. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064.  https://doi.org/10.1016/j.biortech.2007.01.057 CrossRefPubMedGoogle Scholar
  23. Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534.  https://doi.org/10.1016/j.biotechadv.2014.10.005 CrossRefPubMedGoogle Scholar
  24. Cheng Q, Call DF (2016) Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications. Environ Sci Process Impacts 18:968–980.  https://doi.org/10.1039/C6EM00219F CrossRefPubMedGoogle Scholar
  25. Choong YY, Norli I, Abdullah AZ, Yhaya MF (2016) Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Bioresour Technol 209:369–379.  https://doi.org/10.1016/j.biortech.2016.03.028 CrossRefPubMedGoogle Scholar
  26. Clement BG, Kehl LE, DeBord KL, Kitts CL (1998) Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J Microbiol Methods 31:135–142.  https://doi.org/10.1016/S0167-7012(97)00105-X CrossRefGoogle Scholar
  27. Deublein S (2009) Biogas from waste and renewable resources: an introduction. Choice Rev Online 46:2682–2682.  https://doi.org/10.5860/CHOICE.46-2682 CrossRefGoogle Scholar
  28. Divya D, Gopinath LR, Merlin Christy P (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sust Energ Rev 42:690–699.  https://doi.org/10.1016/j.rser.2014.10.055 CrossRefGoogle Scholar
  29. Felix CR, Ljungdahl LG (1993) The cellulosome: the exocellular organelle of Clostridium. Annu Rev Microbiol 47:791–819.  https://doi.org/10.1146/annurev.mi.47.100193.004043 CrossRefPubMedGoogle Scholar
  30. Ferry JG (1993) Fermentation of acetate. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Springer, Boston, pp 304–334CrossRefGoogle Scholar
  31. Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley-Intersciences, CanadaCrossRefGoogle Scholar
  32. Gomez Camacho CE, Ruggeri B (2018) Syntrophic microorganisms interactions in anaerobic digestion (AD): a critical review in the light of increase the energy production. Chem Eng Trans 64:391–396.  https://doi.org/10.3303/CET1864066 CrossRefGoogle Scholar
  33. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167.  https://doi.org/10.2166/wst.1983.0164 CrossRefGoogle Scholar
  34. Guo J, Peng Y, Ni B-J, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Factories 14:33.  https://doi.org/10.1186/s12934-015-0218-4 CrossRefGoogle Scholar
  35. Hagen LH, Frank JA, Zamanzadeh M, Eijsink VG, Pope PB, Horn SJ, Arntzen MØ (2017) Quantitative metaproteomics highlight the metabolic contributions of uncultured phylotypes in a thermophilic anaerobic digester. Appl Env Microbiol 83:e01955–e01916.  https://doi.org/10.1128/AEM.01955-16 CrossRefGoogle Scholar
  36. Hanreich A, Heyer R, Benndorf D, Rapp E, Pioch M, Reichl U, Klocke M (2012) Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Can J Microbiol 58:917–922.  https://doi.org/10.1139/w2012-058 CrossRefPubMedGoogle Scholar
  37. Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Benndorf D, Heyer R, Rapp E, Pühler A, Reichl U, Klocke M (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 36:330–338.  https://doi.org/10.1016/j.syapm.2013.03.006 CrossRefPubMedGoogle Scholar
  38. Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A (2018) Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 102:5045–5063.  https://doi.org/10.1007/s00253-018-8976-7 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Herbst F-A, Lünsmann V, Kjeldal H, Jehmlich N, Tholey A, von Bergen M, Nielsen JL, Hettich RL, Seifert J, Nielsen PH (2016) Enhancing metaproteomics—the value of models and defined environmental microbial systems. Proteomics 16:783–798.  https://doi.org/10.1002/pmic.201500305 CrossRefPubMedGoogle Scholar
  40. Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102:5153–5161.  https://doi.org/10.1016/j.biortech.2011.01.012 CrossRefPubMedGoogle Scholar
  41. Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U (2013) Metaproteome analysis of the microbial communities in agricultural biogas plants. New Biotechnol 30:614–622.  https://doi.org/10.1016/j.nbt.2013.01.002 CrossRefGoogle Scholar
  42. Heyer R, Kohrs F, Reichl U, Benndorf D (2015) Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol 8:749–763.  https://doi.org/10.1111/1751-7915.12276 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Heyer R, Benndorf D, Kohrs F, De Vrieze J, Boon N, Hoffmann M, Rapp E, Schlüter A, Sczyrba A, Reichl U (2016) Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnol Biofuels 9:155.  https://doi.org/10.1186/s13068-016-0572-4 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D (2017) Challenges and perspectives of metaproteomic data analysis. J Biotechnol 261:24–36.  https://doi.org/10.1016/j.jbiotec.2017.06.1201 CrossRefPubMedGoogle Scholar
  45. Heyer R, Schallert K, Siewert C, Kohrs F, Greve J, Maus I, Klang J, Klocke M, Heiermann M, Hoffmann M, Püttker S, Calusinska M, Zoun R, Saake G, Benndorf D, Reichl U (2019) Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome 7:69.  https://doi.org/10.1186/s40168-019-0673-y CrossRefPubMedPubMedCentralGoogle Scholar
  46. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101:8868–8872.  https://doi.org/10.1016/j.biortech.2010.06.088 CrossRefPubMedGoogle Scholar
  47. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559.  https://doi.org/10.1039/c5py00263j CrossRefGoogle Scholar
  48. Jain S, Jain S, Tim Wolf I, Lee J, Wah Tong Y (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sust Energ Rev 52:142–154.  https://doi.org/10.1016/j.rser.2015.07.091 CrossRefGoogle Scholar
  49. Jia X, Xi B-D, Li M-X, Yang Y, Wang Y (2017a) Metaproteomics analysis of the functional insights into microbial communities of combined hydrogen and methane production by anaerobic fermentation from reed straw. PLoS One 12:e0183158.  https://doi.org/10.1371/journal.pone.0183158 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jia X, Xi B, Li M, Liu D, Hou J, Hao Y, Meng F (2017b) Metaproteomic analysis of the relationship between microbial community phylogeny, function and metabolic activity during biohydrogen-methane coproduction under short-term hydrothermal pretreatment from food waste. Bioresour Technol 245:1030–1039.  https://doi.org/10.1016/j.biortech.2017.08.180 CrossRefPubMedGoogle Scholar
  51. Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245:1498–1506.  https://doi.org/10.1016/j.biortech.2017.05.142 CrossRefPubMedGoogle Scholar
  52. Joyce A, Ijaz UZ, Nzeteu C, Vaughan A, Shirran SL, Botting CH, Quince C, O’Flaherty V, Abram F (2018) Linking microbial community structure and function during the acidified anaerobic digestion of grass. Front Microbiol 9:540.  https://doi.org/10.3389/fmicb.2018.00540 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kanwal S, Chaudhry N, Munir S, Sana H (2019) Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manag 88:280–290.  https://doi.org/10.1016/j.wasman.2019.03.053 CrossRefPubMedGoogle Scholar
  54. Karlsson R, Gonzales-Siles L, Boulund F, Svensson-Stadler L, Skovbjerg S, Karlsson A, Davidson M, Hulth S, Kristiansson E, Moore ERB (2015) Proteotyping: proteomic characterization, classification and identification of microorganisms – a prospectus. Syst Appl Microbiol 38:246–257.  https://doi.org/10.1016/j.syapm.2015.03.006 CrossRefPubMedGoogle Scholar
  55. Kohrs F, Heyer R, Magnussen A, Benndorf D, Muth T, Behne A, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U (2014) Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 29:59–67.  https://doi.org/10.1016/j.anaerobe.2013.11.009 CrossRefPubMedGoogle Scholar
  56. Kohrs F, Heyer R, Bissinger T, Kottler R, Schallert K, Püttker S, Behne A, Rapp E, Benndorf D, Reichl U (2017) Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition. Anaerobe 46:56–68.  https://doi.org/10.1016/j.anaerobe.2017.02.005 CrossRefPubMedGoogle Scholar
  57. Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:477.  https://doi.org/10.3389/fmicb.2015.00477 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Krause L, Diaz NN, Edwards RA, Gartemann K-H, Krömeke H, Neuweger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136:91–101.  https://doi.org/10.1016/j.jbiotec.2008.06.003 CrossRefPubMedGoogle Scholar
  59. Lacerda CMR, Choe LH, Reardon KF (2007) Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res 6:1145–1152.  https://doi.org/10.1021/pr060477v CrossRefPubMedGoogle Scholar
  60. Li Y, Zhang R, Liu X, Chen C, Xiao X, Feng L, He Y, Liu G (2013a) Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure. Energy Fuel 27:2085–2091.  https://doi.org/10.1021/ef400117f CrossRefGoogle Scholar
  61. Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013b) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569.  https://doi.org/10.1016/j.biortech.2013.09.063 CrossRefPubMedGoogle Scholar
  62. Li R, Wu Z, Wangb Y, Ding L, Wang Y (2016) Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol Rep 9:46–52.  https://doi.org/10.1016/j.btre.2016.01.002 CrossRefGoogle Scholar
  63. Li W, Khalid H, Zhu Z, Zhang R, Liu G, Chen C, Thorin E (2018) Methane production through anaerobic digestion: participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl Energy 226:1219–1228.  https://doi.org/10.1016/j.apenergy.2018.05.055 CrossRefGoogle Scholar
  64. Lin Y-W, Tuan N, Huang S-L (2016) Metaproteomic analysis of the microbial community present in a thermophilic swine manure digester to allow functional characterization: a case study. Int Biodeterior Biodegrad 115:64–73.  https://doi.org/10.1016/j.ibiod.2016.06.013 CrossRefGoogle Scholar
  65. Liu Z-H, Chen H-Z (2015) Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. Bioresour Technol 193:345–356.  https://doi.org/10.1016/j.biortech.2015.06.114 CrossRefPubMedGoogle Scholar
  66. Lü F, Bize A, Guillot A, Monnet V, Madigou C, Chapleur O, Mazéas L, He P, Bouchez T (2014) Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. ISME J 8:88–102.  https://doi.org/10.1038/ismej.2013.120 CrossRefPubMedGoogle Scholar
  67. Madigan M, Martinko J, Dunlap PV, Clark DP (2008) Brock biology of microorganisms. Int Microbiol 11:65–73Google Scholar
  68. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust Energ Rev 36:412–427.  https://doi.org/10.1016/j.rser.2014.04.039 CrossRefGoogle Scholar
  69. Mcinerney M, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135.  https://doi.org/10.1007/BF00411351 CrossRefGoogle Scholar
  70. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer J-P, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951.  https://doi.org/10.1016/j.biotechadv.2014.04.007 CrossRefPubMedGoogle Scholar
  71. Morris R, Schauer-Gimenez A, Bhattad U, Kearney C, Struble CA, Zitomer D, Maki JS (2014) Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass. Microb Biotechnol 7:77–84.  https://doi.org/10.1111/1751-7915.12094 CrossRefPubMedGoogle Scholar
  72. Mulat DG, Ward AJ, Adamsen APS, Voigt NV, Nielsen JL, Feilberg A (2014) Quantifying contribution of synthrophic acetate oxidation to methane production in thermophilic anaerobic reactors by membrane inlet mass spectrometry. Environ Sci Technol 140130145609003.  https://doi.org/10.1021/es403144e
  73. Mustafa AM, Li H, Radwan AA, Sheng K, Chen X (2018) Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour Technol 259:54–60.  https://doi.org/10.1016/j.biortech.2018.03.028 CrossRefPubMedGoogle Scholar
  74. Nallathambi Gunaseelan V (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114.  https://doi.org/10.1016/S0961-9534(97)00020-2 CrossRefGoogle Scholar
  75. Ortseifen V, Stolze Y, Maus I, Sczyrba A, Bremges A, Albaum SP, Jaenicke S, Fracowiak J, Pühler A, Schlüter A (2016) An integrated metagenome and-proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 231:268–279.  https://doi.org/10.1016/j.jbiotec.2016.06.014 CrossRefPubMedGoogle Scholar
  76. Park J, Lee B, Shi P, Kwon H, Jeong SM, Jun H (2018) Methanol metabolism and archaeal community changes in a bioelectrochemical anaerobic digestion sequencing batch reactor with copper-coated graphite cathode. Bioresour Technol 259:398–406.  https://doi.org/10.1016/j.biortech.2018.03.009 CrossRefPubMedGoogle Scholar
  77. Passaris I, Van Gaelen P, Cornelissen R, Simoens K, Grauwels D, Vanhaecke L, Springael D, Smets I (2018) Cofactor F430 as a biomarker for methanogenic activity: application to an anaerobic bioreactor system. Appl Microbiol Biotechnol 102:1191–1201.  https://doi.org/10.1007/s00253-017-8681-y CrossRefPubMedGoogle Scholar
  78. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174.  https://doi.org/10.1016/j.resconrec.2017.12.005 CrossRefGoogle Scholar
  79. Pérez-Rodríguez N, García-Bernet D, Domínguez JM (2016) Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production. Bioresour Technol 221:130–138.  https://doi.org/10.1016/j.biortech.2016.09.013 CrossRefPubMedGoogle Scholar
  80. Poudel BN, Paudel KP, Timilsina G, Zilberman D (2012) Providing numbers for a food versus fuel debate: an analysis of a future biofuel production scenario. Appl Econ Perspect Policy 34:637–668.  https://doi.org/10.1093/aepp/pps039 CrossRefGoogle Scholar
  81. Rahman MA, Møller HB, Saha CK, Alam MM, Wahid R, Feng L (2017) Optimal ratio for anaerobic co-digestion of poultry droppings and lignocellulosic-rich substrates for enhanced biogas production. Energy Sustain Dev 39:59–66.  https://doi.org/10.1016/j.esd.2017.04.004 CrossRefGoogle Scholar
  82. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–256.  https://doi.org/10.1023/A:1013116728817 CrossRefPubMedGoogle Scholar
  83. Rastogi G, Ranade DR, Yeole TY, Patole MS, Shouche YS (2008) Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresour Technol 99:5317–5326.  https://doi.org/10.1016/j.biortech.2007.11.024 CrossRefPubMedGoogle Scholar
  84. Roseman S (1969) The transport of carbohydrates by a bacterial phosphotransferase system. J Gen Physiol 54:138–184.  https://doi.org/10.1085/jgp.54.1.138 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J Biosci Bioeng 111:41–46.  https://doi.org/10.1016/j.jbiosc.2010.08.011 CrossRefPubMedGoogle Scholar
  86. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186.  https://doi.org/10.1016/j.biortech.2014.09.103 CrossRefPubMedGoogle Scholar
  87. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280CrossRefGoogle Scholar
  88. Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann K-H, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90.  https://doi.org/10.1016/j.jbiotec.2008.05.008 CrossRefPubMedGoogle Scholar
  89. Schneider T, Riedel K (2010) Environmental proteomics: analysis of structure and function of microbial communities. Proteomics 10:785–798.  https://doi.org/10.1002/pmic.200900450 CrossRefPubMedGoogle Scholar
  90. Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29:249–261.  https://doi.org/10.1111/j.1574-6941.1999.tb00616.x CrossRefGoogle Scholar
  91. Shrestha PM, Rotaru A-E (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5:237.  https://doi.org/10.3389/fmicb.2014.00237 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Siddique MNI, Wahid ZA (2018) Achievements and perspectives of anaerobic co-digestion: a review. J Clean Prod 194:359–371.  https://doi.org/10.1016/j.jclepro.2018.05.155 CrossRefGoogle Scholar
  93. Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varanasi P, George A, Balan V, Gao X, Kumar R, Dale BE, Wyman CE, Simmons BA (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2:62.  https://doi.org/10.3389/fenrg.2014.00062 CrossRefGoogle Scholar
  94. Speda J, Jonsson B-H, Carlsson U, Karlsson M (2017) Metaproteomics-guided selection of targeted enzymes for bioprospecting of mixed microbial communities. Biotechnol Biofuels 10:128.  https://doi.org/10.1186/s13068-017-0815-z CrossRefPubMedPubMedCentralGoogle Scholar
  95. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415.  https://doi.org/10.1126/science.1196526 CrossRefPubMedGoogle Scholar
  96. Theuerl S, Kohrs F, Benndorf D, Maus I, Wibberg D, Schlüter A, Kausmann R, Heiermann M, Rapp E, Reichl U, Pühler A, Klocke M (2015) Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome. Appl Microbiol Biotechnol 99:7791–7803.  https://doi.org/10.1007/s00253-015-6627-9 CrossRefPubMedGoogle Scholar
  97. Tong X, Smith LH, McCarty PL (1990) Methane fermentation of selected lignocellulosic materials. Biomass 21:239–255.  https://doi.org/10.1016/0144-4565(90)90075-U CrossRefGoogle Scholar
  98. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64.  https://doi.org/10.1016/j.copbio.2013.11.004 CrossRefPubMedGoogle Scholar
  99. von Netzer F, Kuntze K, Vogt C, Richnow HH, Boll M, Lueders T (2016) Functional gene markers for fumarate-adding and dearomatizing key enzymes in anaerobic aromatic hydrocarbon degradation in terrestrial environments. J Mol Microbiol Biotechnol 26:180–194.  https://doi.org/10.1159/000441946 CrossRefGoogle Scholar
  100. Wang D, Liu Y, Ngo HH, Zhang C, Yang Q, Peng L, He D, Zeng G, Li X, Ni B-J (2017) Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresour Technol 238:343–351.  https://doi.org/10.1016/j.biortech.2017.04.054 CrossRefPubMedGoogle Scholar
  101. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860.  https://doi.org/10.1007/s00253-009-2246-7 CrossRefPubMedGoogle Scholar
  102. Wenzel L, Heyer R, Schallert K, Löser L, Wünschiers R, Reichl U, Benndorf D (2018) SDS-PAGE fractionation to increase metaproteomic insight into the taxonomic and functional composition of microbial communities for biogas plant samples. Eng Life Sci 18:498–509.  https://doi.org/10.1002/elsc.201800062 CrossRefGoogle Scholar
  103. Westerholm M, Moestedt J, Schnürer A (2016) Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl Energy 179:124–135.  https://doi.org/10.1016/j.apenergy.2016.06.061 CrossRefGoogle Scholar
  104. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920.  https://doi.org/10.1111/j.1462-2920.2004.00687.x CrossRefPubMedGoogle Scholar
  105. Wilmes P, Bond PL (2009) Microbial community proteomics: elucidating the catalysts and metabolic mechanisms that drive the Earth’s biogeochemical cycles. Curr Opin Microbiol 12:310–317.  https://doi.org/10.1016/j.mib.2009.03.004 CrossRefPubMedGoogle Scholar
  106. Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15:3409–3417.  https://doi.org/10.1002/pmic.201500183 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wintsche B, Jehmlich N, Popp D, Harms H, Kleinsteuber S (2018) Metabolic adaptation of methanogens in anaerobic digesters upon trace element limitation. Front Microbiol 9:405.  https://doi.org/10.3389/fmicb.2018.00405 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yan Q, Li Y, Huang B, Wang A, Zou H, Miao H, Li R (2012) Proteomic profiling of the acid tolerance response (ATR) during the enhanced biomethanation process from Taihu Blue Algae with butyrate stress on anaerobic sludge. J Hazard Mater 235–236:286–290.  https://doi.org/10.1016/j.jhazmat.2012.07.062 CrossRefPubMedGoogle Scholar
  109. Yin D-M, Westerholm M, Qiao W, Bi S-J, Wandera SM, Fan R, Jiang M-M, Dong R-J (2018) An explanation of the methanogenic pathway for methane production in anaerobic digestion of nitrogen-rich materials under mesophilic and thermophilic conditions. Bioresour Technol 264:42–50.  https://doi.org/10.1016/j.biortech.2018.05.062 CrossRefPubMedGoogle Scholar
  110. Zhang W, Dai K, Xia X-Y, Wang H-J, Chen Y, Lu Y-Z, Zhang F, Zeng RJ (2018) Free acetic acid as the key factor for the inhibition of hydrogenotrophic methanogenesis in mesophilic mixed culture fermentation. Bioresour Technol 264:17–23.  https://doi.org/10.1016/j.biortech.2018.05.049 CrossRefPubMedGoogle Scholar
  111. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35.  https://doi.org/10.1016/j.pecs.2014.01.001 CrossRefGoogle Scholar
  112. Zhu Y, McBride MJ (2017) The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Appl Microbiol Biotechnol 101:7113–7127.  https://doi.org/10.1007/s00253-017-8467-2 CrossRefPubMedGoogle Scholar
  113. Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11:4127–4139.  https://doi.org/10.5897/AJBX11.054 CrossRefGoogle Scholar
  114. Ziganshin AM, Ziganshina EE, Kleinsteuber S, Nikolausz M (2016) Comparative analysis of methanogenic communities in different laboratory-scale anaerobic digesters. Archaea 2016:1–12.  https://doi.org/10.1155/2016/3401272 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alicia Guadalupe Talavera-Caro
    • 1
  • María Alejandra Sánchez-Muñoz
    • 1
  • Inty Omar Hernández-De Lira
    • 1
  • Lilia Ernestina Montañez-Hernández
    • 1
  • Ayerim Yedid Hernández-Almanza
    • 1
  • Jésus Antonio Morlett-Chávez
    • 2
  • María de las Mercedes Esparza-Perusquia
    • 3
  • Nagamani Balagurusamy
    • 1
    Email author
  1. 1.Facultad de Ciencias Biológicas, Laboratorio de BioremediaciónUniversidad Autónoma de CoahuilaTorreónMexico
  2. 2.Facultad de Ciencias Químicas, Laboratorio de Biología MolecularUniversidad Autónoma de CoahuilaSaltilloMexico
  3. 3.Facultad de Medicina, Departamento de BioquímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations