Granulation and Biodegradation by Microbial Species in Granular Sequencing Batch Reactor for Soy Sauce Wastewater Treatment

  • Hasnida Harun
  • Aznah Nor AnuarEmail author
  • Mohd Hakim Ab Halim
  • Inawati Othman
  • Noor Hasyimah Rosman
  • Nor Hazren Abdul Hamid
  • Zaini Ujang
  • Mark van Loosdrecht
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)


At least 80,000 tonnes of the condiments were produced in Malaysia and estimated to increase in volume by 5% by the following year. In addition, one tonne of soy sauce generates about 7–9 tonnes of high strength wastewater. Aerobic granules are known to be regular, smooth, and nearly round in shape with excellent settling ability. They also have dense and strong microbial structure and high biomass retention with the ability to withstand high organic loading. These advantages encouraged recent development of aerobic granulation technology to treat high strength wastewaters such as soy sauce wastewater. Therefore, an efficient Granular Sequencing Batch Reactor (GSBR) treatment system ought to be in place to treat the high strength wastewater. The metagenome sequencing analysis revealed an abundance of microbial diversity accommodating in aerobic granular sludge cultivated with soy sauce wastewater. Existence of 77.52% exopolysaccharides substances (EPS)-producing bacteria such as Pseudomonas and Bacteroides which had the capability in biodegraded waste in wastewater biological treatment were found in aerobic granular sludge. Thus, the performances of aerobic granular sludge in biodegraded organic and nutrient from soy sauce wastewater were in consequence to the bacterial community that occupied in aerobic granules.


Soy sauce wastewater Aerobic granular sludge EPS bacteria Pseudomonas 


  1. Adav SS, Lee DJ, Show KY, Tay JH (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adav SS, Lee DJ, Lai JY (2009) Functional consortium from aerobic granules under high organic loading rates. Bioresour Technol 100(14):3465–3470PubMedCrossRefGoogle Scholar
  3. Bassin JP, Kleerebezem R, Dezotti M, Van Loosdrecht MCM (2012) Measuring biomass specific ammonium, nitrite and phosphate uptake rates in aerobic granular sludge. Chemosphere 89(10):1161–1168PubMedCrossRefGoogle Scholar
  4. Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5(11):1701–1712PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bond PL, Keller J, Blackall LL (1998) Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. Water Sci Technol 37(4):567–571CrossRefGoogle Scholar
  6. Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19(6):544–549PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chen H, Zhou S, Li T (2010) Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. Environ Technol 31(14):1601–1612PubMedCrossRefGoogle Scholar
  8. Chiu ZC, Chen MY, Lee DJ, Wang CH, Lai JY (2007) Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Res 41(4):884–892PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cirik K, Kitis M, Cinar O (2013) The effect of biological sulfate reduction on anaerobic color removal in anaerobic–aerobic sequencing batch reactors. Bioprocess Biosyst Eng 36(5):579–589PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinf 11:485–491CrossRefGoogle Scholar
  11. Dahalan FA (2012) Development and characterization of phototrophic aerobic granular sludge. Ph.D Thesis. Universiti Teknologi MalaysiaGoogle Scholar
  12. De Sanctis M, Di Iaconi C, Lopez A, Rossetti S (2010) Granular biomass structure and population dynamics in Sequencing Batch Biofilter Granular Reactor (SBBGR). Bioresour Technol 101(7):2152–2158PubMedCrossRefGoogle Scholar
  13. Di Iaconi C, Ramadori R, Lopez A (2006) Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochem Eng J 31(2):118–124CrossRefGoogle Scholar
  14. Di Iaconi C, Del Moro G, De Sanctis M, Rossetti S (2010) A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res 44(12):3635–3644PubMedCrossRefGoogle Scholar
  15. Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility, 2nd edn. CRC, New YorkCrossRefGoogle Scholar
  16. Erşan YÇ, Erguder TH (2014) The effect of seed sludge type on aerobic granulation via anoxic–aerobic operation. Environ Technol 35(23):2928–2939PubMedCrossRefGoogle Scholar
  17. Etterer TJ (2006) Formation, structure and function of aerobic granular sludge. Ph.D. Thesis. Technische Universität München, MunichGoogle Scholar
  18. Fernández-Nava Y, Maranon E, Soons J, Castrillón L (2008) Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour Technol 99(17):7976–7981PubMedCrossRefPubMedCentralGoogle Scholar
  19. Filali A, Manas A, Mercade M, Bessiere Y, Biscans B, Sperandio M (2012) Stability and performance of two GSBR operated in alternating anoxic/aerobic or anaerobic/aerobic conditions for nutrient removal. Biochem Eng J 67:10–19CrossRefGoogle Scholar
  20. Gao D, Liu L, Liang H, Wu WM (2011) Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit Rev Biotechnol 31(2):137–152PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gerardi MH (2006) Wastewater bacteria, 5th edn. Wiley, Hoboken, NJCrossRefGoogle Scholar
  22. Hui YH, Meunier-Goddik L, Josephsen J, Nip WK, Stanfield PS (2004) Handbook of food and beverage fermentation technology, 134th edn. Marcel Dekker, New York, NYCrossRefGoogle Scholar
  23. Jiang HL, Tay JH, Maszenan AM, Tay STL (2004) Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol 70(11):6767–6775PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jiang X, Mingchao MA, Jun LI, Anhuai LU, Zhong Z (2008) Bacterial diversity of active sludge in wastewater treatment plant. Earth Sci Front 15(6):163–168CrossRefGoogle Scholar
  25. Khan MZ, Mondal PK, Sabir S (2013) Aerobic granulation for wastewater bioremediation: a review. Can J Chem Eng 91(6):1045–1058CrossRefGoogle Scholar
  26. Kim IS, Kim SM, Jang A (2008) Characterization of aerobic granules by microbial density at different COD loading rates. Bioresour Technol 99(1):18–25PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kim KS, Sajjad M, Lee J, Park J, Jun T (2014) Variation of extracellular polymeric substances (EPS) and specific resistance to filtration in sludge granulation process to the change of influent organic loading rate. Desalin Water Treat 52(22–24):4376–4387CrossRefGoogle Scholar
  28. Kishida N, Tsuneda S, Kim JH, Sudo R (2009) Simultaneous nitrogen and phosphorus removal from high-strength industrial wastewater using aerobic granular sludge. J Environ Eng 135(3):153–158CrossRefGoogle Scholar
  29. Klein G (2011) Antibiotic resistance and molecular characterization of probiotic and clinical Lactobacillus strains in relation to safety aspects of probiotics. Foodborne Pathog Dis 8(2):267–281PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kragelund C, Kong Y, Van der Waarde J, Thelen K, Eikelboom D, Tandoi V, Thomsen TR, Nielsen PH (2006) Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology 152(10):3003–3012PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lee DG, Bonner JS, Garton LS, Ernest AN, Autenrieth RL (2002) Modeling coagulation kinetics incorporating fractal theories: comparison with observed data. Water Res 36(4):1056–1066CrossRefGoogle Scholar
  32. Lee C, Kim J, Shin SG, Hwang S (2008) Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol Ecol 65(3):544–554PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lee DJ, Chen YY, Show KY, Whiteley CG, Tay JH (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28(6):919–934PubMedCrossRefPubMedCentralGoogle Scholar
  34. Levantesi C, Beimfohr C, Geurkink B, Rossetti S, Thelen K, Krooneman J, Snaidr J, van der Waarde J, Tandoi V (2004) Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 27(6):716–727PubMedCrossRefPubMedCentralGoogle Scholar
  35. Li ZH, Kuba T, Kusuda T (2006) The influence of starvation phase on the properties and the development of aerobic granules. Enzym Microb Technol 38(5):670–674CrossRefGoogle Scholar
  36. Liu YQ, Liu Y, Tay JH (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2):143–148PubMedCrossRefPubMedCentralGoogle Scholar
  37. Martins AM, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge – a critical review. Water Res 38(4):793–817PubMedCrossRefPubMedCentralGoogle Scholar
  38. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:1–8CrossRefGoogle Scholar
  39. Mishima K, Nakamura M (1991) Self-immobilization of aerobic activated sludge – a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Sci Technol 23(4–6):981–990CrossRefGoogle Scholar
  40. Mongkolwai T, Assavanig A, Amnajsongsiri C, Flegel TW, Bhumiratana A (1997) Technology transfer for small and medium soy sauce fermentation factories in Thailand: a consortium approach. Food Res Int 30(8):555–563CrossRefGoogle Scholar
  41. More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25CrossRefGoogle Scholar
  42. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, Van Loosdrecht MCM, Ahmad A, Nawahwi MZ (2010) Development of granular sludge for textile wastewater treatment. Water Res 44(15):4341–4350PubMedCrossRefPubMedCentralGoogle Scholar
  43. Nagaoka H, Ueda S, Miya A (1996) Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Sci Technol 34(9):165–172CrossRefGoogle Scholar
  44. Ni BJ, Yu HQ (2008) Storage and growth of denitrifiers in aerobic granules: Part I. Model development. Biotechnol Bioeng 99(2):314–323PubMedCrossRefPubMedCentralGoogle Scholar
  45. Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Curr Opin Biotechnol 23(3):452–459PubMedCrossRefPubMedCentralGoogle Scholar
  46. Othman I, Anuar AN, Ujang Z, Rosman NH, Harun H, Chelliapan S (2013) Livestock wastewater treatment using aerobic granular sludge. Bioresour Technol 133:630–634PubMedCrossRefPubMedCentralGoogle Scholar
  47. Pijuan M, Werner U, Yuan Z (2009) Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules. Water Res 43(14):3622–3632PubMedCrossRefPubMedCentralGoogle Scholar
  48. Qin L, Liu Y (2006) Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor. Chemosphere 63(6):926–933PubMedCrossRefPubMedCentralGoogle Scholar
  49. Schwarzenbeck N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biotechnol 66(6):711–718PubMedCrossRefPubMedCentralGoogle Scholar
  50. Shah HN, Gharbia S (2010) Mass spectrometry for microbial proteomics, vol 341. Wiley, ChichesterCrossRefGoogle Scholar
  51. Song Z, Pan Y, Zhang K, Ren N, Wang A (2010) Effect of seed sludge on characteristics and microbial community of aerobic granular sludge. J Environ Sci 22(9):1312–1318CrossRefGoogle Scholar
  52. Su JJ, Yeh KS, Tseng PW (2006) A strain of Pseudomonas sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan. Curr Microbiol 53(1):77–81PubMedCrossRefPubMedCentralGoogle Scholar
  53. Tay JH, Liu QS, Liu Y (2001) The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol 33(3):222–226PubMedCrossRefPubMedCentralGoogle Scholar
  54. Tay JH, Pan S, He Y, Tay STL (2004) Effect of organic loading rate on aerobic granulation. I: Reactor performance. J Environ Eng 130(10):1094–1101CrossRefGoogle Scholar
  55. Van Der Waarde J, Krooneman J, Geurkink B, Van Der Werf A, Eikelboom D, Beimfohr C, Snaidr J, Levantesi C, Tandoi V (2002) Molecular monitoring of bulking sludge in industrial wastewater treatment plants. Water Science and Technology 46(1–2):551–558PubMedCrossRefGoogle Scholar
  56. Veiga MC, Jain MK, Wu W, Hollingsworth RI, Zeikus JG (1997) Composition and role of extracellular polymers in methanogenic granules. Appl Environ Microbiol 63(2):403–407PubMedPubMedCentralCrossRefGoogle Scholar
  57. Verawaty M, Tait S, Pijuan M, Yuan Z, Bond PL (2013) Breakage and growth towards a stable aerobic granule size during the treatment of wastewater. Water Res 47(14):5338–5349PubMedCrossRefPubMedCentralGoogle Scholar
  58. Vijayaraghavan K, Ahmad D, Aziz MEBA (2007) Aerobic treatment of palm oil mill effluent. J Environ Manag 82(1):24–31CrossRefGoogle Scholar
  59. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554PubMedPubMedCentralCrossRefGoogle Scholar
  60. Wei Y, Ji M, Li R, Qin F (2012) Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Manag 32(3):448–455PubMedCrossRefGoogle Scholar
  61. Weiss A, Jérôme V, Freitag R (2007) Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants. J Chromatogr B 853(1):190–197CrossRefGoogle Scholar
  62. Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances. Springer, Berlin, pp 1–19CrossRefGoogle Scholar
  63. Winkler MH, Kleerebezem R, De Bruin LMM, Verheijen PJT, Abbas B, Habermacher J, Van Loosdrecht MCM (2013) Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Appl Microbiol Biotechnol 97(16):7447–7458PubMedCrossRefGoogle Scholar
  64. Wu CY, Peng YZ, Wang RD, Zhou YX (2012) Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Chemosphere 86(8):767–773PubMedCrossRefPubMedCentralGoogle Scholar
  65. Yadav V, Prappulla SG, Jha A, Poonia A (2011) A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: production, purification and characterization. Biotechnology. Bioinf Bioeng 1:415–421Google Scholar
  66. Yadav TC, Khardenavis AA, Kapley A (2014) Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresour Technol 165:257–264PubMedCrossRefGoogle Scholar
  67. Yan S, Subramanian B, Surampalli RY, Narasiah S, Tyagi RD (2007) Isolation, characterization, and identification of bacteria from activated sludge and soluble microbial products in wastewater treatment systems. Pract Period Hazard Toxic Radioact Waste Manage 11(4):240–258CrossRefGoogle Scholar
  68. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7(5):1–13CrossRefGoogle Scholar
  69. Zhang L, Feng X, Zhu N, Chen J (2007) Role of extracellular protein in the formation and stability of aerobic granules. Enzym Microb Technol 41(5):551–557CrossRefGoogle Scholar
  70. Zhang B, Ji M, Qiu Z, Liu H, Wang J, Li J (2011) Microbial population dynamics during sludge granulation in an anaerobic–aerobic biological phosphorus removal system. Bioresour Technol 102(3):2474–2480PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hasnida Harun
    • 1
  • Aznah Nor Anuar
    • 2
    Email author
  • Mohd Hakim Ab Halim
    • 2
  • Inawati Othman
    • 3
  • Noor Hasyimah Rosman
    • 3
  • Nor Hazren Abdul Hamid
    • 1
  • Zaini Ujang
    • 2
  • Mark van Loosdrecht
    • 4
  1. 1.Faculty of Engineering Technology, Department of Civil Engineering TechnologyUniversiti Tun Hussein OnnParit RajaMalaysia
  2. 2.Malaysia-Japan International Institute of Technology, Universiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Faculty of Civil Engineering, Department of Environmental EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  4. 4.Faculty of Applied Sciences, Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations