Advertisement

An Efficient High Order Algorithm for Solving Regularized Long Wave Equation

  • Dursun IrkEmail author
  • Melis Zorşahin Görgülü
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1111)

Abstract

The Galerkin finite element method, based on cubic trigonometric B-spline for the space discretization and fourth order Runge Kutta method for time discretization is proposed for numerical solution of the Regularized Long Wave (RLW) equation. The numerical example related to single solitary wave is considered as the test problem. To see the accuracy for the proposed method, the maximum error norm \( L_{\infty } \) is computed and conservation property of the RLW equation will be validated by calculating the three conservation quantities, corresponding to mass, momentum and energy.

Keywords

Galerkin finite element method Cubic trigonometric B-spline Regularized long wave equation Solitary waves 

References

  1. 1.
    Peregrine, D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)CrossRefGoogle Scholar
  2. 2.
    Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in non-linear dispersive systems. Philos. Trans. R. Soc. London A. 272, 47–78 (1972)CrossRefGoogle Scholar
  3. 3.
    Gardner, L.R.T., Gardner, G.A., Dağ, İ.: A B-spline finite element method for the regularized long wave equation. Commun. Numer. Meth. Eng. 11, 59–68 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gardner, L.R.T., Dağ, İ.: The boundary-forced regularized long wave equation. II. Nuova Cimento 110B, 1487–1496 (1995)CrossRefGoogle Scholar
  5. 5.
    Zaki, S.I.: Solitary waves of the splitted RLW equation. Comput. Phys. Comm. 138, 80–91 (2001)CrossRefGoogle Scholar
  6. 6.
    Avilez-Valente, P., Seabra-Santos, F.J.: A Petrov-Galerkin finite element scheme for the regularized long wave equation. Comput. Mech. 34, 256–270 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Saka, B., Dağ, İ., Doğan, A.: Galerkin method for the numerical solution of the RLW equation using quadratic B-splines. Int. J. Comput. Math. 81, 727–739 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Esen, A., Kutluay, S.: Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174, 833–845 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dağ, İ., Saka, B., Irk, D.: Galerkin methods for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math. 190(1–2), 532–547 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Saka, B., Dağ, İ.: A numerical solution of the RLW equation by Galerkin method using quartic B-splines. Commun. Numer. Methods Eng. 24, 1339–1361 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Doğan, A.: Numerical solution of RLW equation using linear finite elements within Galerkin’s method. Appl. Math. Model. 26–7, 771–783 (2002)CrossRefGoogle Scholar
  12. 12.
    Irk, D., Keskin, P.: Quadratic trigonometric B-spline Galerkin methods for the regularized long wave equation. J. Appl. Anal. Comput. 7, 617–631 (2017)MathSciNetGoogle Scholar
  13. 13.
    Irk, D., Keskin, P.: Cubic trigonometric B-spline Galerkin methods for the regularized long wave equation. J. Phys: Conf. Ser. 766(1), 012032 (2016)Google Scholar
  14. 14.
    Olver, P.J.: Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc. 85, 143–159 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of Eskişehir OsmangaziEskişehirTurkey

Personalised recommendations