• Jonathan CremersEmail author
Part of the Springer Theses book series (Springer Theses)


This thesis explores the design and synthesis of heterometallated oligo-porphyrin nanostructures and presents an investigation into the photophysical and electronic properties of this class of compounds. This introductory chapter presents a literature review of heterometallic porphyrin arrays, followed by an introduction to some of the techniques used to investigate the structures presented throughout this thesis.


  1. 1.
    Willstätter R (1915) Chlorophyll. J Am Chem Soc 37:323CrossRefGoogle Scholar
  2. 2.
    McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517CrossRefGoogle Scholar
  3. 3.
    Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA, Isaacs NW, McGlynn P, Hunter CN (1996) The purple bacterial photosynthetic unit. Photosynth Res 48:55PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jimenez R, Dikshit SN, Bradforth SE, Fleming GR (1996) Electronic excitation transfer in the LH2 complex of rhodobacter sphaeroides. J Phys Chem 100:6825CrossRefGoogle Scholar
  5. 5.
    Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem 239:2370PubMedPubMedCentralGoogle Scholar
  6. 6.
    Senge MO, Davis M (2010) Porphyrin (porphine)—a neglected parent compound with potential. JPP 14:557Google Scholar
  7. 7.
    Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331:445PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bowen AM, Jones MW, Lovett JE, Gaule TG, McPherson MJ, Dilworth JR, Timmel CR, Harmer JR (2016) Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(ii) centres. PCCP 18:5981CrossRefGoogle Scholar
  9. 9.
    Wang S-P, Shen Y-F, Zhu B-Y, Wu J, Li S (2016) Recent advances in the template-directed synthesis of porphyrin nanorings. Chem Commun 52:10205CrossRefGoogle Scholar
  10. 10.
    Anderson HL (1999) Building molecular wires from the colours of life: conjugated porphyrin oligomers. Chem Commun 2323Google Scholar
  11. 11.
    Terazima M, Shimizu H, Osuka A (1997) The third-order nonlinear optical properties of porphyrin oligomers. J Appl Phys 81:2946CrossRefGoogle Scholar
  12. 12.
    Nakano A, Osuka A, Yamazaki I, Yamazaki T, Nishimura Y (1998) Windmill‐like porphyrin arrays as potent light‐harvesting antenna complexes. Angew Chem Int Ed 37:3023CrossRefGoogle Scholar
  13. 13.
    Osuka A, Tanabe N, Nakajima S, Maruyama K (1996) Synthesis of 1,4-phenylene-bridged linear porphyrin arrays. J Chem Soc Perkin Trans 2:199CrossRefGoogle Scholar
  14. 14.
    Wagner RW, Johnson TE, Lindsey JS (1996) Soluble synthetic multiporphyrin arrays 1. Modular design and synthesis. J Am Chem Soc 118:11166CrossRefGoogle Scholar
  15. 15.
    Seth J, Palaniappan V, Johnson TE, Prathapan S, Lindsey JS, Bocian DF (1994) Investigation of electronic communication in multi-porphyrin light-harvesting arrays. J Am Chem Soc 116:10578CrossRefGoogle Scholar
  16. 16.
    Arnold DP, Johnson AW, Mahendran MJ (1978) Some reactions of meso-formyloctaethylporhyrin. Chem Soc Perkin Trans 1:366CrossRefGoogle Scholar
  17. 17.
    Arnold DP, Nitschinsk LJ (1992) Porphyrin dimers linked by conjugated butadiynes. Tetrahedron 48:8781CrossRefGoogle Scholar
  18. 18.
    Arnold DP (2000) Two rings are better than one: adventures in porphyrin chemistry. Synlett 2000:296CrossRefGoogle Scholar
  19. 19.
    Anderson HL (1994) Conjugated porphyrin ladders. Inorg Chem 33:972CrossRefGoogle Scholar
  20. 20.
    Winters MU, Kärnbratt J, Eng M, Wilson CJ, Anderson HL, Albinsson B (2007) Photophysics of a butadiyne-linked porphyrin dimer: influence of conformational flexibility in the ground and first singlet excited state. J Phys Chem C 111:7192CrossRefGoogle Scholar
  21. 21.
    Winters MU, Dahlstedt E, Blades HE, Wilson CJ, Frampton MJ, Anderson HL, Albinsson B (2007) Probing the efficiency of electron transfer through porphyrin-based molecular wires. J Am Chem Soc 129:4291PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Taylor PN, Anderson HL (1999) Cooperative self-assembly of double-strand conjugated porphyrin ladders. J Am Chem Soc 121:11538CrossRefGoogle Scholar
  23. 23.
    Hogben HJ, Sprafke JK, Hoffmann M, Pawlicki M, Anderson HL (2011) Stepwise effective molarities in porphyrin oligomer complexes: preorganization results in exceptionally strong chelate cooperativity. J Am Chem Soc 133:20962PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bhyrappa P, Krishnan V, Nethaji M (1993) Solvation and axial ligation properties of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II). J Chem Soc Dalton Trans 1901Google Scholar
  25. 25.
    Whitty A (2008) Cooperativity and biological complexity. Nat Chem Biol 4:435PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Perutz MF (2009) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22:139CrossRefGoogle Scholar
  27. 27.
    Hunter CA, Anderson HL (2009) What is cooperativity?. Angew Chem Int Ed 48:7488CrossRefGoogle Scholar
  28. 28.
    Busch DH (1992) Structural definition of chemical templates and the prediction of new and unusual materials. J Inclusion Phenom Mol Recognit Chem 12:389CrossRefGoogle Scholar
  29. 29.
    Fatin-Rouge N, Blanc S, Pfeil A, Rigault A, Albrecht-Gary A-M, Lehn J-M (2001) Self‐assembly of tricuprous double helicates: thermodynamics, kinetics, and mechanism. Helv Chim Acta 84:1694CrossRefGoogle Scholar
  30. 30.
    Lehn J-M (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angew Chem Int Ed 27:89CrossRefGoogle Scholar
  31. 31.
    Lehn J-M, Rigault A (1988) Helicates: tetra‐ and pentanuclear double helix complexes of cuI and poly(bipyridine) strands. Angew Chem Int Ed 27:1095CrossRefGoogle Scholar
  32. 32.
    Lehn J-M (2002) Toward self-organization and complex matter. Science 295:2400PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Núñez-Villanueva D, Iadevaia G, Stross AE, Jinks MA, Swain JA, Hunter CA (2017) H-bond self-assembly: folding versus duplex formation. J Am Chem Soc 139:6654PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310CrossRefGoogle Scholar
  35. 35.
    Adams H, Chekmeneva E, Hunter CA, Misuraca MC, Navarro C, Turega SM (2013) Quantification of the effect of conformational restriction on supramolecular effective molarities. J Am Chem Soc 135:1853Google Scholar
  36. 36.
    von Krbek LKS, Achazi AJ, Solleder M, Weber M, Paulus B, Schalley CA (2016) Allosteric and chelate cooperativity in divalent crown ether/ammonium complexes with strong binding enhancement. Chem Eur J 22:15475CrossRefGoogle Scholar
  37. 37.
    Anderson S, Anderson HL, Sanders JKM (1993) Expanding roles for templates in synthesis. Acc Chem Res 26:469CrossRefGoogle Scholar
  38. 38.
    Hoffmann M, Kärnbratt J, Chang M-H, Herz LM, Albinsson B, Anderson HL (2008) Enhanced π conjugation around a porphyrin[6] nanoring. Angew Chem Int Ed 47:4993CrossRefGoogle Scholar
  39. 39.
    O’Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TD, Saywell A, Blunt MO, O’Shea JN, Beton PH, Malfois M, Anderson HL (2011) Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469:72CrossRefGoogle Scholar
  40. 40.
    Durot S, Taesch J, Heitz V (2014) Multiporphyrinic cages: architectures and functions. Chem Rev 114:8542PubMedPubMedCentralGoogle Scholar
  41. 41.
    Anderson HL, Sanders JKM (1990) Amine‐template‐directed synthesis of cyclic porphyrin oligomers. Angew Chem Int Ed 29:1400CrossRefGoogle Scholar
  42. 42.
    Li J, Ambroise A, Yang SI, Diers JR, Seth J, Wack CR, Bocian DF, Holten D, Lindsey JS (1999) Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel of porphyrins. J Am Chem Soc 121:8927CrossRefGoogle Scholar
  43. 43.
    Yu L, Lindsey JS (2001) Rational syntheses of cyclic hexameric porphyrin arrays for studies of self-assembling light-harvesting systems. J Org Chem 66:7402PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Tomizaki K-Y, Yu L, Wei L, Bocian DF, Lindsey JS (2003) Synthesis of cyclic hexameric porphyrin arrays. Anchors for surface immobilization and columnar self-assembly. J Org Chem 68:8199PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mongin O, Schuwey A, Vallot M-A, Gossauer A (1999) Synthesis of a macrocyclic porphyrin hexamer with a nanometer-sized cavity as a model for the light-harvesting arrays of purple bacteria. Tetrahedron Lett 40:8347CrossRefGoogle Scholar
  46. 46.
    Rucareanu S, Schuwey A, Gossauer A (2006) One-step template-directed synthesis of a macrocyclic tetraarylporphyrin hexamer based on supramolecular interactions with a C3-symmetric Tetraarylporphyrin trimer. J Am Chem Soc 128:3396PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Tashiro K, Aida T, Zheng J-Y, Kinbara K, Saigo K, Sakamoto S, Yamaguchi K (1999) A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C60. J Am Chem Soc 121:9477CrossRefGoogle Scholar
  48. 48.
    Yanagisawa M, Tashiro K, Yamasaki M, Aida T (2007) Hosting fullerenes by dynamic bond formation with an iridium porphyrin cyclic dimer: a “chemical friction” for rotary guest motions. J Am Chem Soc 129:11912PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tashiro K, Hirabayashi Y, Aida T, Saigo K, Fujiwara K, Komatsu K, Sakamoto S, Yamaguchi K (2002) A supramolecular oscillator composed of carbon nanocluster C120 and a Rhodium(III) Porphyrin cyclic dimer. J Am Chem Soc 124:12086PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hoffmann M, Wilson CJ, Odell B, Anderson HL (2007) Template‐directed synthesis of a π‐conjugated porphyrin nanoring. Angew Chem Int Ed 46:3122CrossRefGoogle Scholar
  51. 51.
    Kondratuk DV, Perdigao LMA, O’Sullivan MC, Svatek S, Smith G, O’Shea JN, Beton PH, Anderson HL (2012) Two vernier‐templated routes to a 24‐porphyrin nanoring. Angew Chem Int Ed 51:6696CrossRefGoogle Scholar
  52. 52.
    Kamonsutthipaijit N, Anderson HL (2017) Template-directed synthesis of linear porphyrin oligomers: classical, vernier and mutual vernier. Chem Sci 8:2729PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kondratuk DV, Perdigão LMA, Esmail AMS, O’Shea JN, Beton PH, Anderson HL (2015) Supramolecular nesting of cyclic polymers. Nat Chem 7:317CrossRefGoogle Scholar
  54. 54.
    Neuhaus P, Cnossen A, Gong JQ, Herz LM, Anderson HL (2015) A molecular nanotube with three‐dimensional π‐conjugation. Angew Chem Int Ed 54:7344CrossRefGoogle Scholar
  55. 55.
    Favereau L, Cnossen A, Kelber JB, Gong JQ, Oetterli RM, Cremers J, Herz LM, Anderson HL (2015) Six-coordinate zinc porphyrins for template-directed synthesis of spiro-fused nanorings. J Am Chem Soc 137:14256PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Stulz E, Scott SM, Ng Y-F, Bond AD, Teat SJ, Darling SL, Feeder N, Sanders JKM (2003) Construction of multiporphyrin arrays using ruthenium and rhodium coordination to phosphines. Inorg Chem 42:6564PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Haycock RA, Hunter CA, James DA, Michelsen U, Sutton LR (2000) Self-assembly of oligomeric porphyrin rings. Org Lett 2:2435PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Stulz E, Ng Y-F, Scott SM, Sanders JKM (2002) Amplification of a cyclic mixed-metalloporphyrin tetramer from a dynamic combinatorial library through orthogonal metal coordination. Chem Commun 524Google Scholar
  59. 59.
    Davidson GJE, Tong LH, Raithby PR, Sanders JKM (2006) Aluminium(iii) porphyrins as supramolecular building blocks. Chem Commun 3087Google Scholar
  60. 60.
    Rousseaux SAL, Gong JQ, Haver R, Odell B, Claridge TDW, Herz LM, Anderson HL (2015) Self-assembly of russian doll concentric porphyrin nanorings. J Am Chem Soc 137:12713PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Borovkov V, Lintuluoto JM, Inoue Y (1998) Efficient synthesis of unsymmetrical transition metalloporphyrin dimers under mild conditions. Synlett 768Google Scholar
  62. 62.
    Borovkov V, Lintuluoto JM, Inoue Y (1999) Synthesis of Zn‐, Mn‐, and Fe‐containing mono‐ and heterometallated ethanediyl‐bridged porphyrin dimers. Helv Chim Acta 82:919CrossRefGoogle Scholar
  63. 63.
    Brun AM, Harriman A, Heitz V, Sauvage JP (1991) Charge transfer across oblique bisporphyrins: two-center photoactive molecules. J Am Chem Soc 113:8657CrossRefGoogle Scholar
  64. 64.
    Brun AM, Atherton SJ, Harriman A, Heitz V, Sauvage JP (1992) Photophysics of entwined porphyrin conjugates: competitive exciton annihilation, energy-transfer, electron-transfer, and superexchange processes. J Am Chem Soc 114:4632CrossRefGoogle Scholar
  65. 65.
    Harriman A, Heitz V, Chambron J-C, Sauvage J-P (1994) Electronic coupling in oblique bisporphyrins. Coord Chem Rev 132:229CrossRefGoogle Scholar
  66. 66.
    Andersson M, Linke M, Chambron J-C, Davidsson J, Heitz V, Hammarström L, Sauvage J-P (2002) Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination. J Am Chem Soc 124:4347PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Linke M, Fujita N, Chambron J-C, Heitz V, Sauvage J-P (2001) A [2]-catenane whose rings incorporate two differently metallated porphyrins. New J Chem 25:790CrossRefGoogle Scholar
  68. 68.
    Andréasson J, Kodis G, Ljungdahl T, Moore AL, Moore TA, Gust D, Mårtensson J, Albinsson B (2003) Photoinduced hole transfer from the triplet state in a porphyrin-based donor−bridge−acceptor system. J Phys Chem A 107:8825CrossRefGoogle Scholar
  69. 69.
    Pettersson K, Wiberg J, Ljungdahl T, Mårtensson J, Albinsson B (2006) Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor−bridge−acceptor systems. J Phys Chem A 110:319PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Fortage J, Boixel J, Blart E, Hammarström L, Becker HC, Odobel F (2008) Single‐step electron transfer on the nanometer scale: ultra‐fast charge shift in strongly coupled zinc porphyrin–gold porphyrin dyads. Chem Eur J 14:3467PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Fortage J, Boixel J, Blart E, Becker HC, Odobel F (2009) Very fast single-step photoinduced charge separation in zinc porphyrin bridged to a gold porphyrin by a bisethynyl quaterthiophene. Inorg Chem 48:518PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Fortage J, Scarpaci A, Viau L, Pellegrin Y, Blart E, Falkenström M, Hammarström L, Asselberghs I, Kellens R, Libaers W, Clays K, Eng MP, Odobel F (2009) Charge‐transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad. Chem Eur J 15:9058PubMedCrossRefGoogle Scholar
  73. 73.
    Boixel J, Fortage J, Blart E, Pellegrin Y, Hammarstrom L, Becker H-C, Odobel F (2010) Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvaleneelectron donor to a zinc/gold bisporphyrin. Dalton Trans 39:1450PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Larsen RG, Singel DJ (1993) Double electron–electron resonance spin–echo modulation: spectroscopic measurement of electron spin pair separations in orientationally disordered solids. J Chem Phys 98:5134CrossRefGoogle Scholar
  75. 75.
    Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lovett JE, Hoffmann M, Cnossen A, Shutter ATJ, Hogben HJ, Warren JE, Pascu SI, Kay CWM, Timmel CR, Anderson HL (2009) Probing flexibility in porphyrin-based molecular wires using double electron electron resonance. J Am Chem Soc 131:13852PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Richert S, Kuprov I, Peeks MD, Suturina EA, Cremers J, Anderson HL, Timmel CR (2017) Quantifying the exchange coupling in linear copper porphyrin oligomers. PCCP 19:16057CrossRefGoogle Scholar
  78. 78.
    Lambert CJ (2015) Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem Soc Rev 44:875PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16011CrossRefGoogle Scholar
  80. 80.
    Patoux C, Coudret C, Launay J-P, Joachim C, Gourdon A (1997) Topological effects on intramolecular electron transfer via quantum interference. Inorg Chem 36:5037CrossRefGoogle Scholar
  81. 81.
    Li Z, Smeu M, Rives A, Maraval V, Chauvin R, Ratner MA, Borguet E (2015) Towards graphyne molecular electronics. Nat Commun 6:6321PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations