Advertisement

Comparison of Shepard’s Like Methods with Different Basis Functions

  • Francesco Dell’Accio
  • Filomena Di TommasoEmail author
  • Domenico Gonnelli
Conference paper
  • 32 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)

Abstract

The problem of reconstruction of an unknown function from a finite number of given scattered data is well known and well studied in approximation theory. The methods developed with this goal are several and are successfully applied in different contexts. Due to the need of fast and accurate approximation methods, in this paper we numerically compare some variation of the Shepard method obtained by considering different basis functions.

Keywords

Shepard methods Interpolation Quasi-interpolation 

Notes

Acknowledgments

This work was partially supported by the INdAM-GNCS 2019 research project “Kernel-based approximation, multiresolution and subdivision methods and related applications”. This research has been accomplished within RITA (Research ITalian network on Approximation).

References

  1. 1.
    Caira, R., Dell’Accio, F., Di Tommaso, F.: On the bivariate Shepard-Lidstone operators. J. Comput. Appl. Math. 236(7), 1691–1707 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cătinaş, T.: The combined Shepard-Lidstone bivariate operator. In: Mache, D.H., Szabados, J., de Bruin, M.G. (eds.) Trends and Applications in Constructive Approximation, pp. 77–89. Birkhäuser Basel, Basel (2005)CrossRefGoogle Scholar
  3. 3.
    Cătinaş, T.: The bivariate Shepard operator of Bernoulli type. Calcolo 44(4), 189–202 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cavoretto, R., De Rossi, A., Dell’Accio, F., Di Tommaso, F.: Fast computation of triangular Shepard interpolants. J. Comput. Appl. Math. 354, 457–470 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cavoretto, R., De Rossi, A., Perracchione, E.: Efficient computation of partition of unity interpolants through a block-based searching technique. Comput. Math. Appl. 71(12), 2568–2584 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Costabile, F.A., Dell’Accio, F., Di Tommaso, F.: Enhancing the approximation order of local Shepard operators by Hermite polynomials. Comput. Math. Appl. 64(11), 3641–3655 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Costabile, F.A., Dell’Accio, F., Di Tommaso, F.: Complementary Lidstone interpolation on scattered data sets. Numer. Algorithms 64(1), 157–180 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dell’Accio, F., Di Tommaso, F., Hormann, K.: On the approximation order of triangular Shepard interpolation. IMA J. Numer. Anal. 36, 359–379 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dell’Accio, F., Di Tommaso, F.: Complete Hermite-Birkhoff interpolation on scattered data by combined Shepard operators. J. Comput. Appl. Math. 300, 192–206 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dell’Accio, F., Di Tommaso, F.: Scattered data interpolation by Shepard’s like methods: classical results and recent advances. Dolomites Res. Notes Approx. 9, 32–44 (2016)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific Publishing Co. Inc., Singapore (2007)CrossRefGoogle Scholar
  12. 12.
    Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Little, F.: Convex combination surfaces. In: Barnhill, R.E., Boehm, W. (eds.) Surfaces in Computer Aided Geometric Design, North-Holland, vol. 1479, pp. 99–108 (1983)Google Scholar
  14. 14.
    Renka, R.J.: Algorithm 790: CSHEP2D: cubic Shepard method for bivariate interpolation of scattered data. ACM Trans. Math. Softw. 25(1), 70–73 (1999)CrossRefGoogle Scholar
  15. 15.
    Senger, S., Sun, X., Wu, Z.: Optimal order Jackson type inequality for scaled Shepard approximation. J. Approx. Theor. 227, 37–50 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, ACM 1968, pp. 517–524. ACM, New York (1968)Google Scholar
  17. 17.
    Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)Google Scholar
  18. 18.
    Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with Hammersley and Halton points. J. Graph. Tools 2(2), 9–24 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of CalabriaRendeItaly
  2. 2.NTT DATA ItaliaRendeItaly

Personalised recommendations