# The Sequence of Carboncettus Octagons

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)

## Abstract

Considering the classic Fibonacci sequence, we present in this paper a geometric sequence attached to it, where the word “geometric” must be understood in a literal sense: for every Fibonacci number $$F_n$$ we will in fact construct an octagon $$C_n$$ that we will call the n-th Carboncettus octagon, and in this way we obtain a new sequence $$\big \{C_n \big \}_{n}$$ consisting not of numbers but of geometric objects. The idea of this sequence draws inspiration from far away, and in particular from a portal visible today in the Cathedral of Prato, supposed work of Carboncettus marmorarius, and even dating back to the century before that of the writing of the Liber Abaci by Leonardo Pisano called Fibonacci (AD 1202). It is also very important to note that, if other future evidences will be found in support to the historical effectiveness of a Carboncettus-like construction, this would mean that Fibonacci numbers were known and used well before 1202. After the presentation of the sequence $$\big \{C_n\big \}_{n}$$, we will give some numerical examples about the metric characteristics of the first few Carboncettus octagons, and we will also begin to discuss some general and peculiar properties of the new sequence.

## Keywords

Fibonacci numbers Golden ratio Irrational numbers Isogonal polygons Plane geometric constructions

## References

1. 1.
Antoniotti, L, Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterr. J. Math. (in press)Google Scholar
2. 2.
Ball, D.: Equiangular polygons. Math. Gaz. 86(507), 396–407 (2002)
3. 3.
Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018).
4. 4.
Caldarola, F.: The exact measures of the Sierpiński $$d$$-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlin. Sci. Numer. Simul. 63, 228–238 (2018).
5. 5.
Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the Z-transform through infinite computation. Commun. Nonlin. Sci. Numer. Simul. 82, 105019 (2020).
6. 6.
Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M.: Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions. In: Sergeyev, Y., Kvasov, D. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 358–372. Springer, New York (2020)Google Scholar
7. 7.
De Villiers, M.: Equiangular cyclic and equilateral circumscribed polygons. Math. Gaz. 95, 102–107 (2011)
8. 8.
Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)
9. 9.
Margenstern, M.: Fibonacci words, hyperbolic tilings and grossone. Commun. Nonlin. Sci. Numer. Simul. 21(1–3), 3–11 (2015)
10. 10.
Pirillo, G.: A characterization of Fibonacci numbers. Chebyshevskii Sbornik 19(2), 259–271 (2018)
11. 11.
Pirillo, G.: Figure geometriche su un portale del Duomo di Prato. Prato Storia e Arte 121, 7–16 (2017). (in Italian)Google Scholar
12. 12.
Pirillo, G.: La scuola pitagorica ed i numeri di Fibonacci. Archimede 2, 66–71 (2017). (in Italian)Google Scholar
13. 13.
Pirillo, G.: L’origine pitagorica dei numeri di Fibonacci. Periodico di Matematiche 9(2), 99–103 (2017). (in Italian)Google Scholar
14. 14.
Pirillo, G.: Some recent results of Fibonacci numbers, Fibonacci words and Sturmian words. Southeast Asian Bull. Math. 43(2), 273–286 (2019)
15. 15.
Pirillo, G.: Fibonacci numbers and words. Discret. Math. 173(1–3), 197–207 (1997)
16. 16.
Pirillo, G.: Inequalities characterizing standard Sturmian and episturmian words. Theoret. Comput. Sci. 341(1–3), 276–292 (2005)
17. 17.
Pirillo, G.: Numeri irrazionali e segmenti incommensurabili. Nuova Secondaria 7, 87–91 (2005). (in Italian)Google Scholar
18. 18.
Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, Cosenza (2003)
19. 19.
Sergeyev, Y.D.: Lagrange lecture: methodology of numerical computations with infinities and infinitesimals. Rend. Semin. Matematico Univ. Polit. Torino 68(2), 95–113 (2010)
20. 20.
Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)