Advertisement

A Multi-factor RSA-like Scheme with Fast Decryption Based on Rédei Rational Functions over the Pell Hyperbola

  • Emanuele Bellini
  • Nadir MurruEmail author
Conference paper
  • 19 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)

Abstract

We propose a generalization of an RSA-like scheme based on Rédei rational functions over the Pell hyperbola. Instead of a modulus which is a product of two primes, we define the scheme on a multi-factor modulus, i.e. on a product of more than two primes. This results in a scheme with a decryption which is quadratically faster, in the number of primes factoring the modulus, than the original RSA, while preserving a better security. The scheme reaches its best efficiency advantage over RSA for high security levels, since in these cases the modulus can contain more primes. Compared to the analog schemes based on elliptic curves, as the KMOV cryptosystem, the proposed scheme is more efficient. Furthermore a variation of the scheme with larger ciphertext size does not suffer of impossible group operation attacks, as it happens for schemes based on elliptic curves.

Keywords

Cryptography Pell conic Rédei rational functions RSA 

References

  1. 1.
    Barbero, S., Cerruti, U., Murru, N.: Generalized Rédei rational functions and rational approximations over conics. Int. J. Pure Appl. Math 64(2), 305–317 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barbero, S., Cerruti, U., Murru, N.: Solving the Pell equation via Rédei rational functions. Fibonacci Q. 48(4), 348–357 (2010)zbMATHGoogle Scholar
  3. 3.
    Bellini, E., Murru, N.: An efficient and secure RSA-like cryptosystem exploiting Rédei rational functions over conics. Finite Fields Appl. 39, 179–194 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Lenstra, A.K.: A general number field sieve implementation. In: Lenstra, A.K., Lenstra, H.W. (eds.) The development of the number field sieve. LNM, vol. 1554, pp. 103–126. Springer, Heidelberg (1993).  https://doi.org/10.1007/BFb0091541CrossRefzbMATHGoogle Scholar
  5. 5.
    Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring \(N=p^rq\) for large \(r\). Crypto 1666, 326–337 (1999)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)Google Scholar
  7. 7.
    Boudabra, M., Nitaj, A.: A new generalization of the KMOV cryptosystem. J. Appl. Math. Comput. 57, 1–17 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ciet, M., Koeune, F., Laguillaumie, F., Quisquater, J.: Short private exponent attacks on fast variants of RSA. UCL Crypto Group Technical Report Series CG-2003/4, Université Catholique de Louvain (2002)Google Scholar
  9. 9.
    Collins, T., Hopkins, D., Langford, S., Sabin, M.: Public key cryptographic apparatus and method. Google Patents, US Patent 5,848,159 (1998)Google Scholar
  10. 10.
    Compaq: Cryptography using Compaq multiprime technology in a parallel processing environment. ftp://15.217.49.193/pub/solutions/CompaqMultiPrimeWP.pdf. Accessed 2019
  11. 11.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Coppersmith, D., Franklin, M., Patarin, J., Reiter, M.: Low-exponent RSA with related messages. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 1–9. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_1CrossRefGoogle Scholar
  13. 13.
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hastad, J.: N using RSA with low exponent in a public key network. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 403–408. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-39799-X_29CrossRefGoogle Scholar
  15. 15.
    Jacobson, M.J., Williams, H.C., Taylor, K., Dilcher, K.: Solving the Pell Equation. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-84923-2CrossRefGoogle Scholar
  16. 16.
    Koyama, K.: Fast RSA-type schemes based on singular cubic curves \(y^{2} + axy \equiv x^{3}\) (mod n). In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 329–340. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-49264-X_27CrossRefGoogle Scholar
  17. 17.
    Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New public-key schemes based on elliptic curves over the Ring Z\(_{n}\). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_20CrossRefGoogle Scholar
  18. 18.
    Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M.: The number field sieve. In: Lenstra, A.K., Lenstra, H.W. (eds.) The development of the number field sieve. LNM, vol. 1554, pp. 11–42. Springer, Heidelberg (1993).  https://doi.org/10.1007/BFb0091537CrossRefzbMATHGoogle Scholar
  20. 20.
    Lu, Y., Peng, L., Sarkar, S.: Cryptanalysis of an RSA variant with moduli \(N = p^r q^l\). J. Math. Cryptol. 11(2), 117–130 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Prog. Rep. 44, 114–116 (1978)Google Scholar
  22. 22.
    Menezes, A.J., Vanstone, S.A.: A note on cyclic groups, finite fields, and the discrete logarithm problem. Appl. Algebr. Eng. Commun. Comput. 3(1), 67–74 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Miller, G.L.: Riemann’s hypothesis and tests for primality. In: Proceedings of Seventh Annual ACM Symposium on Theory of Computing, pp. 234–239 (1975)Google Scholar
  24. 24.
    More, W.: Fast evaluation of Rédei functions. Appl. Algebr. Eng. Commun. Comput. 6(3), 171–173 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
  26. 26.
    Padhye, S.: A public key cryptosystem based on pell equation. IACR Cryptology ePrint Archive, p. 191 (2006)Google Scholar
  27. 27.
    Rédei, L.: Über eindeutig umkehrbare polynome in endlichen körpern redei. Acta Sci. Math. 11, 85–92 (1946)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Lim, S., Kim, S., Yie, I., Lee, H.: A generalized takagi-cryptosystem with a modulus of the form \(p^{r}q^{s}\). In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 283–294. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44495-5_25CrossRefGoogle Scholar
  29. 29.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  30. 30.
    Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055738CrossRefGoogle Scholar
  31. 31.
    Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36(3), 553–558 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zimmermann, S.: 50 largest factors found by ECM. https://members.loria.fr/PZimmermann/records/top50.html. Accessed 2017

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technology Innovation InstituteAbu DhabiUAE
  2. 2.Department of MathematicsUniversity of TurinTurinItaly

Personalised recommendations