Advertisement

Final Sediment Outcome from Meteorological Flood Events: A Multi-modelling Approach

  • Valeria Lupiano
  • Claudia R. CalidonnaEmail author
  • Elenio Avolio
  • Salvatore La Rosa
  • Giuseppe Cianflone
  • Antonio Viscomi
  • Rosanna De Rosa
  • Rocco Dominici
  • Ines Alberico
  • Nicola Pelosi
  • Fabrizio Lirer
  • Salvatore Di Gregorio
Conference paper
  • 52 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)

Abstract

Coastal areas are more and more exposed to the effects of climatic change. Intense local rainfalls increases the frequency of flash floods and/or flow-like subaerial and afterward submarine landslides. The overall phenomenon of flash flood is complex and involves different phases strongly connected: heavy precipitations in a short period of time, soil erosion, fan deltas forming at mouth and hyperpycnal flows and/or landslides occurrence. Such interrelated phases were separately modelled for simulation purposes by different computational models: Partial Differential Equations methods for weather forecasts and sediment production estimation and Cellular Automata for soil erosion by rainfall and subaerial sediment transport and deposit. Our aim is to complete the model for the last phase of final sediment outcome. This research starts from the results of the previous models and introduces the processes concerning the demolition of fan deltas by sea waves during a sea-storm and the subsequent transport of and sediments in suspension by current at the sea-storm end and their deposition and eventual flowing on the sea bed. A first reduced implementation of the new model SCIDDICA-ss2/w&c1 was applied on the partial reconstruction of the 2016 Bagnara case regarding the meteorological conditions and the flattening of Sfalassà’s fan delta.

Keywords

Extreme event Flood Sediment transport and deposition Subaerial and subaqueous flow-like landslide Modelling and simulation 

References

  1. 1.
    Pielke Sr., R.A.: Mesoscale Meteorological Modeling, 3rd edn. Academic Press, Boston (2013) Google Scholar
  2. 2.
    Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)Google Scholar
  3. 3.
    Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)zbMATHGoogle Scholar
  4. 4.
    Larosa, S., et al.: A PyQGIS plug-in for the sediments production calculation based on the Erosion Potential Method. In: Gao, W. (eds.) Frontiers of Earth Science (2019, Subm.). ISSN 2095-0195 (print version), ISSN 2095-0209 (el. version)Google Scholar
  5. 5.
    Avolio, M.V., Di Gregorio, S., Spataro, W., Trunfio, G.A.: A theorem about the algorithm of minimization of differences for multicomponent cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 289–298. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33350-7_30CrossRefGoogle Scholar
  6. 6.
    Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Futur. Gener. Comput. Syst. 16, 259–271 (1999)CrossRefGoogle Scholar
  7. 7.
    Calidonna, C.R., Di Gregorio, S., Mango Furnari, M.: Mapping applications of cellular automata into applications of cellular automata networks. Comput. Phys. Commun. 147, 724–728 (2002)CrossRefGoogle Scholar
  8. 8.
    Calidonna, C.R., Naddeo, A., Trunfio, G.A., Di Gregorio, S.: From classical infinite space-time CA to a hybrid CA model for natural sciences modeling. Appl. Math. Comput. 218, 8137–8150 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Calidonna, C.R., Di Napoli, C., Giordano, M., Mango Furnari, M., Di Gregorio, S.: A network of cellular automata for a landslide simulation. In: ICS 2001, pp. 419–426 (2001)Google Scholar
  10. 10.
    Mazzanti, P., Bozzano, F., Avolio, M.V., Lupiano, V., Di Gregorio, S.: 3D numerical modelling of submerged and coastal landslides propagation. In: Mosher, D.C., et al. (eds.) Submarine Mass Movements and Their Consequences. NTHR, vol. 28, pp. 127–139. Springer, Dordrecht (2010).  https://doi.org/10.1007/978-90-481-3071-9_11CrossRefGoogle Scholar
  11. 11.
    Avolio, M.V., Lupiano, V., Mazzanti, P., Di Gregorio, S.: An advanced cellular model for flow-type landslide with simulations of subaerial and subaqueous cases. In: Proceedings of the EnviroInfo 2009, vol. 501, pp. 131–140 (2009) Google Scholar
  12. 12.
    Maria, V.A., Francesca, B., Di Gregorio, S., Valeria, L., Paolo, M.: Simulation of submarine landslides by cellular automata methodology. In: Margottini, C., Canuti, P., Sassa, K. (eds.) Landslide Science and Practice, pp. 65–72. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-31427-8_8CrossRefGoogle Scholar
  13. 13.
    Avolio, M.V., Di Gregorio, S., Lupiano, V., Mazzanti, P.: SCIDDICA-SS\(_3\): a new version of cellular automata model for simulating fast moving landslides. J. Supercomput. 65(2), 682–696 (2013). ISSN 0920-8542CrossRefGoogle Scholar
  14. 14.
    Salles, T., Lopez, S., Cacas, M.C., Mulder, T.: Cellular automata model of density currents. Geomorphology 88(1–2), 1–20 (2007)CrossRefGoogle Scholar
  15. 15.
    D’Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R.: A cellular automata model for soil erosion by water. Phys. Chem. Earth Part B 26(1), 33–39 (2001)CrossRefGoogle Scholar
  16. 16.
    Calidonna, C.R., De Pino, M., Di Gregorio, S., Gullace, F., Gullì, D., Lupiano, D.: A CA model for beach morphodynamics. In: AIP Conference Proceedings. Numerical Computations: Theory and Algorithms (NUMTA 2016), vol. 1776 (2016)Google Scholar
  17. 17.
    Arai, K., Basuki, A.: Simulation of hot mudflow disaster with cell automaton and verification with satellite imagery data. Int. Arch. Sci. Photogramm. Remote Sens. Spat. Inf. 38 Part 8, 237–242 (2010)Google Scholar
  18. 18.
    Vanwalleghem, T., Jiménez-Hornero, F., Giráldez, J.V., Laguna, A.M.: Simulation of long-term soil redistribution by tillage using a cellular automata model. Earth Surf. Process. Landf. 35, 761–770 (2010)Google Scholar
  19. 19.
    Valette, G., Prévost, S., Laurent, L., Léonard, J.: SoDA project: a simulation of soil surface degradation by rainfall. Comput. Graph. 30, 494–506 (2006)CrossRefGoogle Scholar
  20. 20.
    Punzo, M., et al.: Remocean X-band wave radar for wave field analysis: case study of Bagnara Calabra (South Tyrrhenian Sea, Italy). J. Sens. 1, 131–140. Application of X-BandWave Radar for Coastal Dynamic Analysis: Case Test of Bagnara Calabra (South Tyrrhenian Sea, IT) 501, 9 (2016). Article ID: 6236925 Google Scholar
  21. 21.
    Gullace, F.: Un tentativo di Modellizzazione della Morfodinamica degli Arenili con Automi Cellulari. Master theses in Physics, Department Physics, University of Calabria, aa 2015/16 (2016)Google Scholar
  22. 22.
    Dominici R.: Personal communication (2019)Google Scholar
  23. 23.
    Avolio, E., Federico, S.: WRF simulations for a heavy rainfall event in southern Italy: verification and sensitivity tests. Atmos. Res. 209, 14–35 (2018)CrossRefGoogle Scholar
  24. 24.
    Auddino, M., Dominici, R., Viscomi, A.: Evaluation of yield sediment in the Sfalassà Fiumara (south western, Calabria) by using Gavrilovi method in GIS enviroment. Rendiconti online della Soc. Geol. Ita. 33, 3–7 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.IRPI UOSNational Research CouncilRendeItaly
  2. 2.ISAC UOSNational Research CouncilLamezia TermeItaly
  3. 3.ISMAR UOSNational Research CouncilNapoliItaly
  4. 4.DIBESTUniversity of CalabriaRendeItaly
  5. 5.DeMaCSUniversity of CalabriaRendeItaly
  6. 6.EalCUBOArcavacata di RendeItaly

Personalised recommendations