A Procedure for Laplace Transform Inversion Based on Smoothing Exponential-Polynomial Splines

  • Rosanna CampagnaEmail author
  • Costanza Conti
  • Salvatore Cuomo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)


Multi-exponential decaying data are very frequent in applications and a continuous description of this type of data allows the use of mathematical tools for data analysis such as the Laplace Transform (LT). In this work a numerical procedure for the Laplace Transform Inversion (LTI) of multi-exponential decaying data is proposed. It is based on a new fitting model, that is a smoothing exponential-polynomial spline with segments expressed in Bernstein-like bases. A numerical experiment concerning the application of a LTI method applied to our spline model highlights that it is very promising in the LTI of exponential decay data.


Laplace Transform Inversion Exponential-polynomial spline Multi-exponential data 



The authors are members of the INdAM Research group GNCS and of the Research ITalian network on Approximation (RITA).


  1. 1.
    Bertero, M., Brianzi, P., Pike, E.R.: On the recovery and resolution of exponential relaxation rates from experimental data: Laplace transform inversion in weighted spaces. Inverse Probl. 1, 1–15 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Campagna, R., Conti, C., Cuomo, S.: Smoothing exponential-polynomial splines for multiexponential decay data. Dolomites Res. Notes Approx. 12, 86–100 (2019)MathSciNetGoogle Scholar
  3. 3.
    Campagna, R., D’Amore, L., Murli, A.: An efficient algorithm for regularization of Laplace transform inversion in real case. J. Comput. Appl. Math. 210(1), 84–98 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cuomo, S., D’Amore, L., Murli, A., Rizzardi, M.: Computation of the inverse Laplace transform based on a collocation method which uses only real values. J. Comput. Appl. Math. 198(1), 98–115 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    D’Amore, L., Campagna, R., Galletti, A., Marcellino, L., Murli, A.: A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis. Inverse Probl. 28(2), 025007 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D’Amore, L., Campagna, R., Mele, V., Murli, A.: ReLaTIve. An Ansi C90 software package for the real Laplace transform inversion. Numer. Algorithms 63(1), 187–211 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D’Amore, L., Campagna, R., Mele, V., Murli, A.: Algorithm 946: ReLIADiff-A C++ software package for real Laplace transform inversion based on algorithmic differentiation. ACM Trans. Math. Softw. 40(4), 31:1–31:20 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    D’Amore, L., Mele, V., Campagna, R.: Quality assurance of Gaver’s formula for multi-precision Laplace transform inversion in real case. Inverse Probl. Sci. Eng. 26(4), 553–580 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Galvosas, P., Callaghan, P.T.: Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media. C.R. Phys. 11(2), 172–180 (2010). Multiscale NMR and relaxation CrossRefGoogle Scholar
  10. 10.
    Henrici, P.: Applied and Computational Complex Analysis, Volume 1: Power Series Integration Conformal Mapping Location of Zero (1988)Google Scholar
  11. 11.
    Miller, M.K., Guy, W.T.: Numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM J. Numer. Anal. 3(4), 624–635 (1966)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Naeeni, M.R., Campagna, R., Eskandari-Ghadi, M., Ardalan, A.A.: Performance comparison of numerical inversion methods for Laplace and Hankel integral transforms in engineering problems. Appl. Math. Comput. 250, 759–775 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Papoulis, A.: A new method of inversion of the Laplace transform. Q. Appl. Math. 14(4), 405–414 (1957)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Provencher, S.W.: Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun. 27(3), 229–242 (1982)CrossRefGoogle Scholar
  15. 15.
    Romano, A., Campagna, R., Masi, P., Cuomo, S., Toraldo, G.: Data-driven approaches to predict states in a food technology case study. In: 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), pp. 1–5 (2018)Google Scholar
  16. 16.
    Romano, A., Cavella, S., Toraldo, G., Masi, P.: 2D structural imaging study of bubble evolution during leavening. Food Res. Int. 50(1), 324–329 (2013)CrossRefGoogle Scholar
  17. 17.
    Schumaker, L.: Spline Functions: Basic Theory, 3rd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  18. 18.
    Severino, G., D’Urso, G., Scarfato, M., Toraldo, G.: The IoT as a tool to combine the scheduling of the irrigation with the geostatistics of the soils. Future Gener. Comput. Syst. 82, 268–273 (2018)CrossRefGoogle Scholar
  19. 19.
    Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–49 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Agricultural SciencesUniversity of Naples Federico IIPortici, NaplesItaly
  2. 2.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly
  3. 3.Department of Mathematics and Applications “R. Caccioppoli”University of Naples Federico IINaplesItaly

Personalised recommendations