Efficient Block Coordinate Methods for Blind Cauchy Denoising

  • Simone RebegoldiEmail author
  • Silvia Bonettini
  • Marco Prato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)


This paper deals with the problem of image blind deconvolution in presence of Cauchy noise, a type of non-Gaussian, impulsive degradation which frequently appears in engineering and biomedical applications. We consider a regularized version of the corresponding data fidelity function, by adding the total variation regularizer on the image and a Tikhonov term on the point spread function (PSF). The resulting objective function is nonconvex with respect to both the image and PSF block, which leads to the presence of several uninteresting local minima. We propose to tackle such challenging problem by means of a block coordinate linesearch based forward backward algorithm suited for nonsmooth nonconvex optimization. The proposed method allows performing multiple forward-backward steps on each block of variables, as well as adopting variable steplengths and scaling matrices to accelerate the progress towards a stationary point. The convergence of the scheme is guaranteed by imposing a linesearch procedure at each inner step of the algorithm. We provide some practical sound rules to adaptively choose both the variable metric parameters and the number of inner iterations on each block. Numerical experiments show how the proposed approach delivers better performances in terms of efficiency and accuracy if compared to a more standard block coordinate strategy.


Blind deconvolution Cauchy noise Nonconvex optimization 



The authors are members of the INDAM research group GNCS.


  1. 1.
    Aubert, G., Ajoul, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–549 (1988)CrossRefGoogle Scholar
  3. 3.
    Banerjee, S., Agrawal, M.: Underwater acoustic communication in the presence of heavy-tailed impulsive noise with bi-parameter Cauchy-Gaussian mixture model. In: Ocean Electronics (SYMPOL), pp. 1–7 (2013)Google Scholar
  4. 4.
    Bertero, M., Boccacci, P., Ruggiero, V.: Inverse Imaging with Poisson Data, pp. 2053–2563. IOP Publishing, Bristol (2018)Google Scholar
  5. 5.
    Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Problems 25(1), 015002 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bonettini, S., Loris, I., Porta, F., Prato, M., Rebegoldi, S.: On the convergence of a linesearch based proximal-gradient method for nonconvex optimization. Inverse Problems 33(5), 055005 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonettini, S., Prato, M., Rebegoldi, S.: A block coordinate variable metric linesearch based proximal gradient method. Comput. Optim. Appl. 71(1), 5–52 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numerica 25, 161–319 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward-backward algorithm. J. Glob. Optim. 66(3), 457–485 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programming problems subject to lower and upper bounds. Math. Program. 106, 403–421 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Frassoldati, G., Zanghirati, G., Zanni, L.: New adaptive stepsize selections in gradient methods. J. Ind. Manag. Optim. 4(2), 299–312 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Idan, M., Speyer, J.: Cauchy estimation for linear scalar systems. IEEE Trans. Autom. Control 55(6), 1329–1342 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lantéri, H., Roche, M., Cuevas, O., Aime, C.: A general method to devise maximum likelihood signal restoration multiplicative algorithms with non-negativity constraints. Signal Process. 81(5), 945–974 (2001)CrossRefGoogle Scholar
  16. 16.
    Laus, F., Pierre, F., Steidl, G.: Nonlocal myriad filters for Cauchy noise removal. J. Math. Imaging Vision 60(8), 1324–1354 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011)CrossRefGoogle Scholar
  18. 18.
    Mei, J.-J., Dong, Y., Huang, T.-Z.: Cauchy noise removal by nonconvex ADMM with convergence guarantees. J. Sci. Comput. 74(2), 743–766 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20(1–2), 99–120 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Peng, Y., Chen, J., Xu, X., Pu, F.: SAR images statistical modeling and classification based on the mixture of alpha-stable distributions. Remote Sens. 5, 2145–2163 (2013)CrossRefGoogle Scholar
  21. 21.
    Perrone, D., Favaro, P.: A clearer picture of total variation blind deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1041–1055 (2016)CrossRefGoogle Scholar
  22. 22.
    Prato, M., La Camera, A., Bonettini, S., Bertero, M.: A convergent blind deconvolution method for post-adaptive-optics astronomical imaging. Inverse Problems 29, 065017 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Prato, M., La Camera, A., Bonettini, S., Rebegoldi, S., Bertero, M., Boccacci, P.: A blind deconvolution method for ground based telescopes and Fizeau interferometers. New Astron. 40, 1–13 (2015)CrossRefGoogle Scholar
  24. 24.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. J. Phys. D. 60(1–4), 259–268 (1992)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with Cauchy noise. SIAM J. Imaging Sci. 8(3), 1894–1922 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Scienze Biomediche, Metaboliche e NeuroscienzeUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations