Advertisement

ATR-FTIR Analysis of Melamine Resin, Phenol-Formaldehyde Resin and Acrylonitrile-Butadiene Rubber Blend Modified by High-Energy Electron Beam Radiation

  • Ivan Kopal
  • Juliána VrškováEmail author
  • Marta Harničárová
  • Ján Valíček
  • Darina Ondrušová
  • Ján Krmela
  • Peter Hybler
Chapter
  • 57 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 124)

Abstract

The influence of high-energy electron beam irradiation on melamine resin, phenol-formaldehyde resin and acrylonitrile-butadiene rubber blend was studied. The response of the studied material to 5 MeV electron beam irradiation with doses from 77 up to 284 kGy was examined and compared to non-irradiated material using the attenuated total reflection Fourier transform infrared spectroscopy. The infrared spectra were acquired in an absorbance mode for wavenumbers ranging from 4000 to 450 cm−1.The effect of electron beam radiation on the chemistry of the irradiated material was proven by varying the peak intensity for the absorption bands of the functional groups of the blend and its individual components. The infrared spectrum analysis demonstrated that at radiation doses of up to 150 kGy in the test blend, the intensity of the radiation-induced cross-linking reactions prevailed over the intensity of the polymer chain cleavage reactions and the breaking of the intermolecular bonds between them. At higher doses of absorbed radiation, radiation-induced degradation processes begin to dominate.

Notes

Acknowledgements

This research work has been supported by the Slovak Scientific Grant Agency project VEGA 1/0589/17, Slovak grant project KEGA 002TnUAD-4/2019, by the research and development project MSMT-15304/2017-1, the INTER-EXCELLENCE programme “European Anthroposphere as a Source of Raw Materials” LTC 17051 and by the project “Centre for quality testing and diagnostics of materials—CEDITEK”, ITMS code 26210120046 relating to the Operational Program Research and project “Advancement and support of R&D for “Centre for diagnostics and quality testing of materials in the domains of the RIS3 SK specialization”, code NFP313010W442.

References

  1. 1.
    Carlsson, D.J., Chmela, S.: Polymers and high-energy irradiation. Degradation and stabilization. In: Scott, G. (ed.) Mechanisms of Polymer Degradation and Stabilization, 1st edn. Springer, Netherlands (1990)CrossRefGoogle Scholar
  2. 2.
    Holík, Z., Danek, M., Manas, M., et al.: The influence of ionizing radiation on chemical resistance of polymers. IJMS 5(3), 210–217 (2011)Google Scholar
  3. 3.
    Drobny, J.G.: Ionizing Radiation and Polymers, Principles, Technology and Applications. Elsevier (2013)Google Scholar
  4. 4.
    Bijwe, J.: Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials—a review. Polym. Compos. 18(3) (2004)CrossRefGoogle Scholar
  5. 5.
    Spadaro, G., Alessi, S., Dispenza, C.: Ionizing radiation-induced crosslinking and degradation of polymers. In: Sun, Y., Chmielewski, A.G. (eds.) Applications of Ionizing Radiation, 2nd edn. Mater. Process. Warsaw (2017)Google Scholar
  6. 6.
    Kashiwagi, M., Hoshi, Y.: Electron beam processing system and its application. SEI Tech Rev 75, 47–53 (2012)Google Scholar
  7. 7.
    Nemtanu, R.M., Brasoveanu, M.: Practical Aspects and Applications of Electron Beam Irradiation. Kerala, India (2011)Google Scholar
  8. 8.
    Singh, P., Venugopal, B.R., Nandini, D.R.: Effect of electron beam irradiation on polymers. J. Mod. Mater. 5(1), 24–33 (2018)CrossRefGoogle Scholar
  9. 9.
    Sabharwal, S.: Electron beam irradiation applications. Proc. PAC 2013, 745–748 (2013)Google Scholar
  10. 10.
    Manas, D., Ovsik, M., Mizera, A., et al.: The effect of irradiation on mechanical and thermal properties of selected types of polymers. Polymers 10(2), 158 (2018)CrossRefGoogle Scholar
  11. 11.
    Rouif, S.: Radiation cross-linked polymers: recent developments and new applications. Nucl. Instrum. Methods Phys. Res. 236(1–4), 68–72 (2005)CrossRefGoogle Scholar
  12. 12.
    Smith, B.C.: Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press, Florida (2011)CrossRefGoogle Scholar
  13. 13.
    Stephen, A., LinCarlton, Y., Dence, W.: Methods in Lignin Chemistry. Springer, Switzerland (2011)Google Scholar
  14. 14.
    Christy, A.A., Ozaki, Y., Gregoriou, V.G.: Modern Fourier Transform Infrared Spectroscopy. Elsevier Science, New York (2001)Google Scholar
  15. 15.
    Guillén, M.D., Goicoechea, E.: Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage. J. Agric. Food Chem. 55(26), 10729–10736 (2008)CrossRefGoogle Scholar
  16. 16.
    Nikolic, G.S.: Fourier Transforms—New Analytical Approaches and FTIR Strategies. Rijeka, Croatia (2011)Google Scholar
  17. 17.
    Berthomieu, C., Hienerwadel, R.: Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 101, 157–170 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, S.J., Yang, H., De-kang, Wu, et al.: Application of Fourier transform infrared spectra (FTIR) fingerprint in the quality control of mineral Chinese medicine limonitum. NCBI 35(4), 909–913 (2015)Google Scholar
  19. 19.
    Seelenbinder, J., Rein, A.: Positive Material Identification: Qualification, Composition Verification and Counterfeit Detection of Polymeric Material using Mobile FTIR Spectrometers. Danbury, USA (2014)Google Scholar
  20. 20.
    Ramos, P.M., Fernández-Coppel, I.A., Ruíz-Potosme, N.M., et al.: Potential of ATR-FTIR spectroscopy for the classification of natural resins. BEMS Rep. 4(1), 03–06 (2018)CrossRefGoogle Scholar
  21. 21.
    Poljanšek, I., Krajnc, M.: Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chim. Slov. 52, 238–244 (2005)Google Scholar
  22. 22.
    Ambrose, D., Abdala, A.A., Vukusic, S.: Melamine formaldehyde: curing studies and reaction mechanism. Polym. J. 45(4), 413–419 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhao, J., Yang, R., Iervolino, R., Barbera, S.: Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR. Rubber Chem. Technol. 86(4), 591–603 (2013)CrossRefGoogle Scholar
  24. 24.
    Kodama, Y., Batista de Lima, N., Giovedi, C., et al.: WAXD and FTIR studies of electron beam irradiated biodegradable polymers. J. Phys. Sci. 2(4), 80–87 (2012)Google Scholar
  25. 25.
    Shin, S., Lee, S.: The influence of electron-beam irradiation on the chemical and the structural properties of medical-grade polyurethane. J. Korean Phys. Soc. 67(1), 71–75 (2015)CrossRefGoogle Scholar
  26. 26.
    Vijayabaskar, V., Bhowmick, A.K.: Electron-beam modification of nitrile rubber in the presence of polyfunctional monomers. J. Appl. Polym. Sci. 95(2), 435–447 (2004)CrossRefGoogle Scholar
  27. 27.
    Kopal, I., Vršková, J., Labaj, I., et al.: The effect of high-energy ionizing radiation on the mechanical properties of a melamine resin, phenol-formaldehyde resin, and nitrile rubber blend. Materials 11(12), 2405 (2018)CrossRefGoogle Scholar
  28. 28.
    Kopal, I., Vršková, J., Ondrušová, D., et al.: Modeling the thermal decomposition of friction composite systems based on yarn reinforced polymer matrices using artificial neural networks. Materwiss Werksttech 50(5), 616–628 (2019)CrossRefGoogle Scholar
  29. 29.
    Kalous, V.: How modern chemistry investigate of molecule structure. Prague (1983)Google Scholar
  30. 30.
    Talabi, S.I., Luz, A.P., Pandolfelli, V.C., Lucas, A.A.: Structural evolution during the catalytic graphization of a thermosetting refractory binder and oxidation resistance of the derived carbons. Mater. Chem. Phys. 212, 113–121 (2018)CrossRefGoogle Scholar
  31. 31.
    Weiss, S., Urdl, K., Mayer, H.A. et al.: IR spectroscopy: suitable method for determination of curing degree and crosslinking type in melamine–formaldehyde resins. J. Appl. Polym. Sci. 136 (2019)CrossRefGoogle Scholar
  32. 32.
    Hassan, M.M.: Effect of gamma irradiation on some properties of reclaimed rubber/nitrile-butadiene rubber blend and its swelling in motor and brake oils. J. Elastomers Plast. 45(1), 77–94 (2012)CrossRefGoogle Scholar
  33. 33.
    Hampton, C., Demoin, D.: Vibrational spectroscopy tutorial: sulfur and phosphorus. NIST Chemistry Web Book (2010). https://faculty.missouri.edu/~glaserr/8160f10/A03_Silver.pdf. Accessed 2018

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ivan Kopal
    • 1
  • Juliána Vršková
    • 1
    Email author
  • Marta Harničárová
    • 3
    • 4
  • Ján Valíček
    • 3
    • 4
  • Darina Ondrušová
    • 1
  • Ján Krmela
    • 1
  • Peter Hybler
    • 2
  1. 1.Faculty of Industrial Technologies in PuchovAlexander Dubček University of TrenčínPúchovSlovakia
  2. 2.Progresa Final SK, s.r.oBratislavaSlovakia
  3. 3.Technical FacultySlovak Univerzity of Agriculture in NitraNitraSlovakia
  4. 4.Faculty of Technology, Department of Mechanical EngineeringInstitute of Technology and Business in České BudějoviceČeské BudějoviceCzech Republic

Personalised recommendations