Advertisement

Fundamental Transverse Vibration Circular Frequency of a Cantilever Beam with an Intermediate Elastic Support

  • Lila Chalah-Rezgui
  • Farid Chalah
  • Salah Eddine Djellab
  • Ammar Nechnech
  • Abderrahim Bali
Chapter
  • 61 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 124)

Abstract

The problem of analyzing the dynamic vibration of a uniform beam was widely investigated in the scientific literature where various numerical methods were considered. The objective of the present study is to investigate the fundamental transverse vibration circular frequency ω1 of a cantilever beam with an intermediate elastic support of variable abscissa a. The analysis is based on the Euler–Bernoulli assumptions and carried out by using the finite element method (FEM). The validation concerned the fixed-free and fixed-pinned ends conditions of the beam. After this, the investigation was conducted by varying both the spring stiffness value from zero to infinite and the abscissa a from 0 to L. Different values of the fundamental circular frequency ω1 are determined for describing the dynamic behavior of the current vibrating beam system. The plotted curves show the variations of the transverse vibration circular frequency ω1 depending on the beam intermediate support location and stiffness.

Keywords

Fundamental angular frequency Cantilever beam vibration Flexible support Translational spring FEM 

References

  1. 1.
    Chalah-Rezgui, L., Chalah, F., Djellab, S.E., Nechnech, A., Bali, A.: Free vibration of a beam having a rotational restraint at one pinned end and a support of variable Abscissa. In: Öchsner, A., Altenbach, H. (eds.) Mechanical and Materials Engineering of Modern Structure and Component Design, pp. 393–400. Springer International Publishing, Cham (2015).  https://doi.org/10.1007/978-3-319-19443-1_32CrossRefGoogle Scholar
  2. 2.
    Chalah-Rezgui, L., Chalah, F., Falek, K., Bali, A., Nechnech, A.: Transverse vibration analysis of uniform beams under various ends restraints. APCBEE Procedia 9, 328–333 (2014).  https://doi.org/10.1016/j.apcbee.2014.01.058CrossRefGoogle Scholar
  3. 3.
    Darabi, M.A., Kazemirad, S., Ghayesh, M.H.: Free vibrations of beam-mass-spring systems: analytical analysis with numerical confirmation. Acta. Mech. Sin. 28, 468–481 (2012).  https://doi.org/10.1007/s10409-012-0010-1MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Falek, K., Lila, R., Farid, C., Bali, A., Nechnech, A.: Structural element vibration analysis. Presented at the ICA 2013 Montreal, Montreal, Canada, pp. 065072–065072 (2013).  https://doi.org/10.1121/1.4799552
  5. 5.
    Gonçalves, P.J.P., Brennan, M.J., Elliott, S.J.: Numerical evaluation of high-order modes of vibration in uniform Euler-Bernoulli beams. J. Sound Vib. 301, 1035–1039 (2007).  https://doi.org/10.1016/j.jsv.2006.10.012CrossRefzbMATHGoogle Scholar
  6. 6.
    Jafari, M., Djojodihardjo, H., Ahmad, K.A.: Vibration analysis of a cantilevered beam with spring loading at the tip as a generic elastic structure. Appl. Mech. Mater. 629, 407–413 (2014).  https://doi.org/10.4028/www.scientific.net/AMM.629.407CrossRefGoogle Scholar
  7. 7.
    Maurizi, M.J., Belles, P.: Vibrations of a beam clamped at one end and carrying a guided mass with an elastic support at the other. J. Sound Vib. 129, 345–349 (1989).  https://doi.org/10.1016/0022-460X(89)90588-9CrossRefGoogle Scholar
  8. 8.
    Maurizi, M.J., Bellés, P.M., Martı́n, H.D.: An almost semicentennial formula for a simple approximation of the natural frequencies of Bernoulli-Euler beams. J. Sound Vib. 260, 191–194 (2003).  https://doi.org/10.1016/S0022-460X(02)01129-XCrossRefGoogle Scholar
  9. 9.
    Maurizi, M.J., Rossi, R.E., Reyes, J.A.: Vibration frequencies for a uniform beam with one end spring-hinged and subjected to a translational restraint at the other end. J. Sound Vib. 48, 565–568 (1976).  https://doi.org/10.1016/0022-460X(76)90559-9CrossRefGoogle Scholar
  10. 10.
    Murphy, J.F.: Transverse vibration of a simply supported beam with symmetric overhang of arbitrary length. J. Test. Eval., JTEVA 25, 522–524 (1997)CrossRefGoogle Scholar
  11. 11.
    Wang, D., Friswell, M.I., Lei, Y.: Maximizing the natural frequency of a beam with an intermediate elastic support. J. Sound Vib. 291, 1229–1238 (2006).  https://doi.org/10.1016/j.jsv.2005.06.028CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lila Chalah-Rezgui
    • 1
  • Farid Chalah
    • 1
  • Salah Eddine Djellab
    • 1
  • Ammar Nechnech
    • 1
  • Abderrahim Bali
    • 2
  1. 1.Faculty of Civil EngineeringUsthbAlgiersAlgeria
  2. 2.Ecole Nationale PolytechniqueAlgiersAlgeria

Personalised recommendations