Advertisement

Toward Smart and Secure IoT Based Healthcare System

  • Smita Sanjay AmbarkarEmail author
  • Narendra Shekokar
Chapter
  • 26 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 266)

Abstract

The protection of a patient’s data is the prime concern in the healthcare sector. With the escalation in the adoption of Internet of Things (IoT) technology for the smart healthcare system, incidences of the revelation of privacy data also upswings hence it becomes necessary to devise a secure smart healthcare system. The requirement of the secure healthcare system is based on a critical survey and this year’s Thales India Data Threat report. The report discloses the percentage of data breaches in past years and emphasizes the need for a tightening of patient data privacy regulation. As a result, the secure smart healthcare system has been recognized as a high priority goal to improve the sustainability of society. However, to concoct a legitimate secure smart healthcare system, threat triggered by integrating multiple devices and protocols need to be curtailed. In addition, a big challenge is to achieve accuracy despite the generation of a colossal amount of data per unit time. Encryption is the top choice for satisfying data privacy laws. Still, only encryption cannot impede data breach activities. It doesn’t always make sense to lush low constraint IoT devices on an algorithm encrypting every data, because it will impose a substantial burden on the system. It is imperative to develop techniques that will detect and prevent threats that vex the security of a healthcare system. Here authors attempt to analyze the smart healthcare architecture, its threats, vulnerabilities and the security measures to provide a secure smart healthcare system.

References

  1. 1.
    Medagliani, P., Leguay, J., Duda, A., Rousseau, F., Duquennoy, S., Raza, S., Ferrari, G., Gonizzi, P., Cirani, S., Veltri, L., Montón, M., Domingo Prieto, M., Dohler, M., Villajosana, I., Dupont, O.: Internet of Things Application from Research and Innovation to Market Deployment (2014)Google Scholar
  2. 2.
    Khambete, N.D., Murray, A.: National efforts to improve healthcare technology management and medical device safety in India. In: 7th International Conference on Appropriate Healthcare Technologies for Developing Countries, pp. 1–5. IET (2012)Google Scholar
  3. 3.
    Dey, N., Ashour, A. (eds.): Classification and Clustering in Biomedical Signal Processing. IGI Global, Hershey (2016)Google Scholar
  4. 4.
    Abouelmehdi, K., Beni-Hssane, A., Khaloufi, H., Saadi, M.: Big data security and privacy in healthcare: a review. In: The 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017) (2017)CrossRefGoogle Scholar
  5. 5.
    Ellen, N.: Security Firm Finds Link between China and Anthem Hack. The Washington Post, 27 Feb 2015. Web, Feb 2016Google Scholar
  6. 6.
    Kwon, J., Johnson, M.: Protecting patient data—the economic perspective of healthcare security. IEEE Secur. Priv. (2015)Google Scholar
  7. 7.
    Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Tavares, J.M.R.: Medical cyber–physical systems: a survey. J. Med. Syst. 42(4), 74 (2018)CrossRefGoogle Scholar
  8. 8.
    Alessandrelli, D., Mainetti, L., Patrono, L., Pellerano, G., Petracca, M., Stefanizzi, M.L.: Implementation and validation of an energy-efficient MAC scheduler for WSNs by a test bed approach. In: 2012 International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2012), art. no. 6347615 (2012)Google Scholar
  9. 9.
    Catarinucci, L., et al.: An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015).  https://doi.org/10.1109/JIOT.2015.2417684CrossRefGoogle Scholar
  10. 10.
    Malan, D., Jones, T.F., Welsh, M., Moulton, S.: CodeBlue: an Ad-Hoc sensor network infrastructure for emergency medical care. In: Proceedings of the MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (WAMES 2004), Boston, MA, USA, 6–9 June 2004Google Scholar
  11. 11.
    Wood, A.V., Doan, G., Cao, T., Selavo, Q., Wu, L., Fang, Y., He, L., Lin, Z., Stankovic, S.: ALARM-NET: wireless sensor networks for assisted-living and residential monitoring; Technical Report CS-2006-01; Department of Computer Science, University of Virginia, Charlottesville, VA, USA (2006)Google Scholar
  12. 12.
    Ko, J., Lim, J.H., Chen, Y., Musaloiu-E. R., Terzis, A., Masson, G.M.: MEDiSN: medical emergency detection in sensor networks. ACM Trans. Embed. Comput. Syst. 10, 1–29 (2010)CrossRefGoogle Scholar
  13. 13.
    Tung, H.C., Tsang, K.F., Lam, K.L., Tung, H.Y., Li, B.Y.S., Yeung, L.F., Ko, K.T., Lau, W.H., Rakocevic, V.: A mobility-enabled inpatient monitoring system using a ZigBee. Sensors (Basel) 14(2), 2397–2416 (2014).  https://doi.org/10.3390/s140202397CrossRefGoogle Scholar
  14. 14.
    Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Sherratt, R.S.: Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Trans. Consum. Electron. 63(4), 442–449 (2017)CrossRefGoogle Scholar
  15. 15.
    Winter, T., et al.: RPL: IPv6 routing protocol for low power and lossy networks. Internet Engineering Task Force (IETF), Fremont, CA, USA, Request for Comments: 6550 (2012)Google Scholar
  16. 16.
    Chen, M., Fang, Y.: Lightweight anonymous authentication protocol for RFID. IEEE Trans. Netw. 25(3) (2017)Google Scholar
  17. 17.
    Fan, K., Member, IEEE, Jiang, W., Li, H., Member, IEEE, Yang, Y., Member, IEEE: Lightweight RFID protocol for medical privacy protection in IoT. IEEE Trans. Ind. Inf. 14(4) (2018)CrossRefGoogle Scholar
  18. 18.
    Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient Comput. Intell. (IJACI) 1(1), 15–26 (2009)CrossRefGoogle Scholar
  19. 19.
    Archip, A., Botezatu, N., Şerban, E., Herghelegiu, P., Zală, A.: An IoT based system for remote patient monitoring. In: 2016 17th International Carpathian Control Conference (ICCC), Tatranska Lomnica, pp. 1–6 (2016).  https://doi.org/10.1109/CarpathianCC.2016.7501056
  20. 20.
    Swaroop, K.N., Chandu, K., Gorrepotu, R, Deb, S.: A health monitoring system for vital signs using IoT. Internet Things 5, 116–129 (2019). ISSN: 2542-6605.  https://doi.org/10.1016/j.iot.2019.01.004. https://www.sciencedirect.com/science/article/pii/S2542660518300349CrossRefGoogle Scholar
  21. 21.
    Pai, S., et al.: Confidentiality in sensor networks: transactional information. IEEE Secur. Priv. Mag. 6(4), 28–35 (2008)Google Scholar
  22. 22.
    Hasan, M., Milon Islam, Md., Ishrak Islam Zarif, Md., Hashem, M.M.A.: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet Things 7, 100059 (2019). ISSN: 2542-6605.  https://doi.org/10.1016/j.iot.2019.100059. https://www.sciencedirect.com/science/article/pii/S2542660519300241CrossRefGoogle Scholar
  23. 23.
    Fedor, S., Collier, M.: On the problem of energy efficiency of multi-hop vs one-hop routing in wireless sensor networks. In: 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), Niagara Falls, ON, pp. 380–385 (2007)Google Scholar
  24. 24.
    Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A., Richardson, M.: A Security Threat Analysis for Routing Protocol for Low-power and Lossy Networks (RPLs), RFC 7416, Internet Engineering Task Force (2015)Google Scholar
  25. 25.
    Tang, W., Ma, X., Huang, J., Wei, J.: Toward improved RPL: a congestion avoidance multipath routing protocol with time factor for wireless sensor networks. J. Sens. 2016, 1–11 (2016).  https://doi.org/10.1155/2016/8128651CrossRefGoogle Scholar
  26. 26.
    Le, A., Loo, J., Luo, Y., Lasebae, A.: The impacts of internal threats towards routing protocol for low power and lossy network performance. In: IEEE Symposium on Computers and Communications (ISCC'13), pp. 789–794 (2013)Google Scholar
  27. 27.
    Wallgren, L., Raza, S., Voigt, T.: Routing attacks and countermeasures in the RPL-based internet of things. Int. J. Distrib. Sens. Netw. (2013).  https://doi.org/10.1155/2013/794326CrossRefGoogle Scholar
  28. 28.
    Bhandari, K.S., Hosen, A.S.M., Cho, G.H.: CoAR: Congestion-Aware Routing Protocol for Low Power and Lossy Networks for IoT Applications Sensors (2018)CrossRefGoogle Scholar
  29. 29.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58, 122103(15) (2015).  https://doi.org/10.1007/s11432-015-5459-7Google Scholar
  30. 30.
    Sridevi, S., Priya, S., Karthigai Kumar, P., SivaMangai, N.M., Rejula, V.: FPGA implementation of efficient AES encryption. In: ICIIECS’15 (n.d.)Google Scholar
  31. 31.
    Bansod, G., Raval, N., Pisharoty, N.: Implementation of a new lightweight encryption design for embedded security. IEEE Trans. (2015)Google Scholar
  32. 32.
    Feizi, S., Ahmadi, A.: A hardware implementation of Simon cryptography algorithm. In: ICCKE-2014Google Scholar
  33. 33.
    Nascimento, F.M., dos Santos, F.M., Moreno, E.D.: A VHDL implementation of the Lightweight Cryptographic Algorithm HIGHT, Sept 2015Google Scholar
  34. 34.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: A Bit-slice Ultra-Lightweight Block Cipher, Suitable for Multiple Platforms (2014)Google Scholar
  35. 35.
    Granjal, J., Monteiro, E., Sá Silva, J.: Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17(3), 1294–1312 (2015) (third quarter).  https://doi.org/10.1109/COMST.2015.2388550CrossRefGoogle Scholar
  36. 36.
    Kimbahune, V.V., Deshpande, A.V., Mahalle, P.N.: Lightweight key management for adaptive addressing in next generation internet. Int. J. Ambient Comput. Intell. (IJACI) 8(1), 50–69 (2017)CrossRefGoogle Scholar
  37. 37.
    Bogdanov, A., et al.: Hash functions and RFID tags: mind the gap. In: Proceedings of the CHES, pp. 283–299 (2008)Google Scholar
  38. 38.
    Ranasinghe, D.C., Cole, P.H.: An evaluation framework, Chapter 8. In: Networked RFID Systems and Lightweight Cryptography. Springer, Berlin, Germany, Nov 2008Google Scholar
  39. 39.
    Pathan, S.K., Deshmukh, S.N., Deshmukh, R.R.: Kerberos authentication system-a public key extension. Int. J. Recent Trends Eng. 1(2), 15 (2009)Google Scholar
  40. 40.
    Raza, S., Duquennoy, S., Voigt, T.: Securing communication in 6LoWPAN with compressed IPsec. In: Proceedings of the International Conference on DCOSS Workshops, pp. 1–8 (2011)Google Scholar
  41. 41.
    Raza, S., Duquennoy, S., Hoglund, J., Roedig, U., Voigt, T.: Secure communication for the Internet of Things—a comparison of link-layer security and IPsec for 6LoWPAN. Secur. Commun. Netw. 7(12), 2654–2668 (2014)CrossRefGoogle Scholar
  42. 42.
    Kim, E., Kaspar, D., Vasseur, J.P.: Design, and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs), Internet Engineering Task Force (IETF), Request for Comments: 6568, Category: Informational, ISSN: 2070-1721Google Scholar
  43. 43.
    Yaoa, X., Chena, Z., Tian, Y.: A Lightweight Attribute-Based Encryption Scheme for the Internet of Things. Elsevier (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Computer DepartmentDJSCE, University of MumbaiMumbaiIndia
  2. 2.Computer DepartmentLTCoE, University of MumbaiMumbaiIndia

Personalised recommendations