Advertisement

Effective Implementation of Energy Aware Polarization Diversity for IoT Networks Using Eigenvector Centrality

  • Sakil ChowdhuryEmail author
  • Laurent Hébert-Dufresne
  • Jeff Frolik
Conference paper
  • 56 Downloads
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

The Internet of Things (IoT) is one the most promising area of applications for complex networks since we know that both the efficiency and fidelity of information transmission rely critically on our understanding of network structure. While antenna diversity schemes improve reliability and capacity for point-to-point links of an IoT network that employs multi-polarized antennas, it is currently unclear how implementation should depend on the network structure of the IoT and what impact structure-dependent implementations will have on the energy consumption of IoT devices. We propose an antenna diversity scheme that leverages local network structure and a distributed calculation of centrality to reduce power consumption by 13% when compared to standard selection diversity technique. The proposed approach exploits distributed eigenvector centrality to identify the most influential nodes based on data flow and then limits their antenna switching frequency proportionally to their centrality. Our results also demonstrate that by taking routers’ centrality metric into account, a network can reduce antenna switching frequency by 17% while ensuring approximately 99% packet delivery rate. More broadly, this study highlights how network science can contribute to the development of efficient IoT devices.

Keywords

Internet of Things Centrality Applied network science Network analysis 

References

  1. 1.
    Hussain, M.I.: Internet of Things: challenges and research opportunities. CSI Trans. ICT 5(1), 87–95 (2017). https://doi.org/10.1007/s40012-016-0136-6 CrossRefGoogle Scholar
  2. 2.
    Hammoudi, S., Aliouat, Z., Harous, S.: Challenges and research directions for Internet of Things. Telecommun. Syst. 67(2), 367–385 (2018). https://doi.org/10.1007/s11235-017-0343-y CrossRefGoogle Scholar
  3. 3.
    Wortmann, F., Flchter, K.: Internet of Things. Bus. Inf. Syst. Eng. 57(3), 221–224 (2015). https://doi.org/10.1007/s12599-015-0383-3 CrossRefGoogle Scholar
  4. 4.
    Qin, W., Chen, S., Peng, M.: Recent advances in industrial internet: insights and challenges. Digital Commun. Netw. (2019). https://doi.org/10.1016/j.dcan.2019.07.001 Google Scholar
  5. 5.
    Kwon, S.C., Stuber, G.L.: Geometrical theory of channel depolarization. IEEE Trans. Veh. Technol. 60(8), 3542–3556 (2011).  https://doi.org/10.1109/tvt.2011.2163094 CrossRefGoogle Scholar
  6. 6.
    Gkizeli, M., Karystinos, G.N.: Maximum-SNR antenna selection among a large number of transmit antennas. IEEE J. Sel. Top. Sign. Proces. 8(5), 891–901 (2014).  https://doi.org/10.1109/jstsp.2014.2328329 ADSCrossRefGoogle Scholar
  7. 7.
    Wang, X., Yang, N., Zhang, H., Hoang, T.M., Gulliver, T.A.: Generalised selection at multi-antenna sources in two-way relay networks. IET Commun. 10(7), 824–831 (2016).  https://doi.org/10.1049/iet-com.2015.0110 CrossRefGoogle Scholar
  8. 8.
    Bemanali, S., Eslami, M.: Low complexity capacity maximizing transmit antenna selection schemes for massive MIMO wireless communications. Wirel. Pers. Commun. 96(3), 3873–3887. https://doi.org/10.1007/s11277-017-4355-4 CrossRefGoogle Scholar
  9. 9.
    Molina-Pico, A., Cuesta-Frau, D., Araujo, A., Alejandre, J., Rozas, A.: Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network. J. Sens. 2016, 8325845 (2016). https://doi.org/10.1155/2016/8325845 CrossRefGoogle Scholar
  10. 10.
    Othman, M.F., Shazali, K.: Wireless sensor network applications: a study in environment monitoring system. Proc. Eng. 41, 1204–1210 (2012). https://doi.org/10.1016/j.proeng.2012.07.302 CrossRefGoogle Scholar
  11. 11.
    Latora, V., Nicosia, V., Russo, G.: Complex Networks: Principles, Methods and Applications. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316216002 CrossRefGoogle Scholar
  12. 12.
    Newman, M.: Networks. Oxford University Press, Oxford (2018).  https://doi.org/10.1093/oso/9780198805090.001.0001 CrossRefGoogle Scholar
  13. 13.
    Bloodgood, J.M., Hornsby, J.S., Rutherford, M., McFarland, R.G.: The role of network density and betweenness centrality in diffusing new venture legitimacy: an epidemiological approach. Int. Entrep. Manag. J. 13(2), 525–552 (2017). https://doi.org/10.1007/s11365-016-0412-9 CrossRefGoogle Scholar
  14. 14.
    Aytaç, V., Turac, T.: Closeness centrality in some splitting networks. Comput. Sci. J. Moldova, 26(3), 251–269 (2018).MathSciNetGoogle Scholar
  15. 15.
    Baldesi, L., Maccari, L., Cigno, R.L.: On the use of eigenvector centrality for cooperative streaming. IEEE Commun. Lett. 21(9), 1953–1956 (2017).  https://doi.org/10.1109/lcomm.2017.2713361 CrossRefGoogle Scholar
  16. 16.
    Ramirez, R.A., Lugo, D., Weller, T.M., Golmohamadi, M., Frolik, J.: Additive manufactured tripolar antenna system for link improvement in high multipath environments. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 2539–2540. IEEE, Piscataway (2017)  https://doi.org/10.1109/apusncursinrsm.2017.8073312

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sakil Chowdhury
    • 1
    Email author
  • Laurent Hébert-Dufresne
    • 1
  • Jeff Frolik
    • 1
  1. 1.University of VermontBurlingtonUSA

Personalised recommendations