Complex Networks Antifragility under Sustained Edge Attack-Repair Mechanisms

  • Alexandru Topîrceanu
  • Mihai UdrescuEmail author
  • Radu Mărculescu
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Resilience is an important property of real-world complex networks with many applications in technological, biological, and social systems. While many natural systems are particularly resilient, some are antifragile, namely, they become stronger when being subjected to attacks, volatility, or errors. In this paper, we consider an edge-attack and local edge-repair response mechanism over several synthetic and real-world datasets, on which we quantify both antifragility (as the dynamics of the largest connected component) and the cost incurred by edge repairs. Our findings show that (1) random repairs generate a stronger antifragile response, thus confirming that antifragility manifests itself in the context of random, rather than deterministic events; and (2) antifragile behavior is fostered by strongly clustered topologies (e.g., real-world networks and the synthetic Watts–Strogatz model with degree distribution). Our results represent a first step towards designing highly resilient networks and developing new methods for thwarting the antifragile response of harmful and hostile systems.


Antifragility Network resilience Network attack-response 


  1. 1.
    Taleb, N.N.: Antifragile: How to Live in a World We Don’t Understand. Allen Lane, London (2012)Google Scholar
  2. 2.
    Taleb, N.N., Douady, R.: Mathematical definition, mapping, and detection of (anti) fragility. Quant. Financ. 13(11), 1677–1689 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Danchin, A., Binder, P.M., Noria, S.: Antifragility and tinkering in biology (and in business) flexibility provides an efficient epigenetic way to manage risk. Genes 2(4), 998–1016 (2011)CrossRefGoogle Scholar
  4. 4.
    Derbyshire, J., Wright, G.: Preparing for the future: development of an ‘antifragile’ methodology that complements scenario planning by omitting causation. Technol. Forecast. Soc. Chang. 82, 215–225 (2014)CrossRefGoogle Scholar
  5. 5.
    Ren, X.-L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Natl. Acad. Sci. U. S. A. 116(14), 6554–6559 (2019)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bright, D., Greenhill, C., Britz, T., Ritter, A., Morselli, C.: Criminal network vulnerabilities and adaptations. Global Crime 18(4), 424–441 (2017)CrossRefGoogle Scholar
  7. 7.
    Duxbury, S.W., Haynie D.L.: Criminal network security: an agent-based approach to evaluating network resilience. Criminology 57(2), 314–342 (2019)CrossRefGoogle Scholar
  8. 8.
    Gatenby, R.A., Silva, A.S., Gillies, R.J., Frieden, B.R.: Adaptive therapy. Cancer Res. 69(11), 4894–4903 (2009)CrossRefGoogle Scholar
  9. 9.
    Lichtman, M., Vondal, M.T., Clancy, T.C., Reed, J.H.: Antifragile communications. IEEE Syst. J. 12(1), 659–670 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Abid, A., Khemakhem, M.T., Marzouk, S., Jemaa, M.B., Monteil, T., Drira, K.: Toward antifragile cloud computing infrastructures. Prog. Comput. Sci. 32, 850–855 (2014)CrossRefGoogle Scholar
  11. 11.
    Fang, Y., Sansavini, G.: Emergence of antifragility by optimum postdisruption restoration planning of infrastructure networks. J. Inf. Syst. 23(4), 04017024 (2017)Google Scholar
  12. 12.
    Mujumdar, A., Mohalik, S.K., Badrinath R.: Antifragility for intelligent autonomous systems (2018). arXiv: 1802.09159Google Scholar
  13. 13.
    Jones, K.H.: Engineering antifragile systems: a change in design philosophy. Proc. Comput. Sci. 32, 870–875 (2014)CrossRefGoogle Scholar
  14. 14.
    Basiri, A., Behnam, N., De Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., Rosenthal, C.: Chaos engineering. IEEE Softw. 33(3), 35–41 (2016)CrossRefGoogle Scholar
  15. 15.
    Topirceanu, A., Udrescu M.: Topological fragility versus antifragility: understanding the impact of real-time repairs in networks under targeted attacks. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1215–1222. IEEE, Barcelona (2018)Google Scholar
  16. 16.
    He, S., Li, S., Ma, H.: Effect of edge removal on topological and functional robustness of complex networks. Phys. A: Stat. Mech. Appl. 388(11), 2243–2253 (2009)CrossRefGoogle Scholar
  17. 17.
    Piraveenan, M., Thedchanamoorthy, G., Uddin, S., Chung, K.S.K.: Quantifying topological robustness of networks under sustained targeted attacks. Soc. Netw. Anal. Min. 3, 939–952 (2013)CrossRefGoogle Scholar
  18. 18.
    Sun, W., Zeng, A.,: Target recovery in complex networks. Eur. Phys. J. B 90(1), 10 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of complex networks. PLoS One 8, e59613 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks. Phys. A Stat. Mech. Appl. 340(1–3), 388–394 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circ. Syst. Fund. Theory Appl. 49(1), 54–62 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vespignani, A.: Complex networks: the fragility of interdependency. Nature 464(7291), 984 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circ. Syst. Mag. 3(1), 6–20 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chen, Y.W., Zhang, L.F., Huang, J.P.: The Watts–Strogatz network model developed by including degree distribution: theory and computer simulation. J. Phys. A Math. Theor. 40(29), 8237 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization (2015). Google Scholar
  28. 28.
  29. 29.
    Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)Google Scholar
  30. 30.
    Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  31. 31.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefGoogle Scholar
  32. 32.
    Dekker, A.H.: Realistic social networks for simulation using network rewiring. In: International Congress on Modelling and Simulation, pp. 677–683 (2007)Google Scholar
  33. 33.
    Pósfai, M., Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Effect of correlations on network controllability. Sci. Rep. 3, 1067 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alexandru Topîrceanu
    • 1
  • Mihai Udrescu
    • 1
    Email author
  • Radu Mărculescu
    • 2
    • 3
  1. 1.Department of Computer and Information TechnologyPolitehnica University of TimişoaraTimişoaraRomania
  2. 2.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Electrical and Computer EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations