Advertisement

Quantum Spacetime and the Renormalization Group: Progress and Visions

  • Antonio D. PereiraEmail author
Conference paper
  • 44 Downloads

Abstract

The quest for a consistent theory which describes the quantum microstructure of spacetime seems to require some departure from the paradigms that have been followed in the construction of quantum theories for the other fundamental interactions. In this contribution we briefly review two approaches to quantum gravity, namely, asymptotically safe quantum gravity and tensor models, based on different theoretical assumptions. Nevertheless, the main goal is to find a universal continuum limit for such theories and we explain how coarse-graining techniques should be adapted to each case. Finally, we argue that although seemingly different, such approaches might be just two sides of the same coin.

Notes

Acknowledgements

I would like to thank Astrid Eichhorn for many inspiring discussions on the topic and the organizers of the conference “Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics” in Leipzig (2018) for the invitation. This work was supported by the DFG through the grant Ei/1037-1.

References

  1. 1.
    S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]
  2. 2.
    M. Gell-Mann, F.E. Low, Phys. Rev. 95, 1300 (1954).  https://doi.org/10.1103/PhysRev.95.1300 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
  4. 4.
    M. Gockeler, R. Horsley, V. Linke, P.E.L. Rakow, G. Schierholz, H. Stuben, Phys. Rev. Lett. 80, 4119 (1998).  https://doi.org/10.1103/PhysRevLett.80.4119, arXiv:hep-th/9712244 [hep-th]
  5. 5.
    H. Gies, J. Jaeckel, Phys. Rev. Lett. 93, 110405 (2004).  https://doi.org/10.1103/PhysRevLett.93.110405, arXiv:hep-ph/0405183 [hep-ph]
  6. 6.
    B.P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016).  https://doi.org/10.1103/PhysRevLett.116.061102, arXiv:1602.03837 [gr-qc]
  7. 7.
    K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7
  8. 8.
    D. Oriti, Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter (Cambridge University Press, Cambridge, 2009). http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521860451 CrossRefGoogle Scholar
  9. 9.
    T.R. Morris, Prog. Theor. Phys. Suppl. 131, 395 (1998).  https://doi.org/10.1143/PTPS.131.395, arXiv:hep-th/9802039 [hep-th]
  10. 10.
    J. Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002). https://doi.org/10.1016/S0370-1573(01)00098-9, arXiv:hep-ph/0005122 [hep-ph]
  11. 11.
    K. Aoki, Int. J. Mod. Phys. B14, 1249 (2000). https://doi.org/10.1016/S0217-9792(00)00092-3
  12. 12.
    J.M. Pawlowski, Ann. Phys. 322, 2831 (2007). https://doi.org/10.1016/j.aop.2007.01.007, arXiv:hep-th/0512261 [hep-th]
  13. 13.
  14. 14.
  15. 15.
  16. 16.
    C. Wetterich (2019). arXiv:1901.04741 [hep-th]
  17. 17.
    R. Percacci, Proceedings of the 3rd International Conference on Time and Matter, TAM2010 (Budva, 2011), pp. 123–142. arXiv:1110.6389 [hep-th]
  18. 18.
    M. Reuter, F. Saueressig, New J. Phys. 14, 055022 (2012). https://doi.org/10.1088/1367-2630/14/5/055022, arXiv:1202.2274 [hep-th]
  19. 19.
    A. Eichhorn, Black Holes, Gravitational Waves and Spacetime Singularities (Rome, 2017). http://inspirehep.net/record/1623009/files/arXiv:1709.03696.pdf, arXiv:1709.03696 [gr-qc]
  20. 20.
    R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety. 100 Years of General Relativity, vol. 3 (World Scientific, Singapore, 2017)Google Scholar
  21. 21.
    A. Eichhorn, (2018), arXiv:1810.07615 [hep-th]
  22. 22.
  23. 23.
    M.Y. Kalmykov, Classical Quantum Gravity 12, 1401 (1995). https://doi.org/10.1088/0264-9381/12/6/007, arXiv:hep-th/9502152 [hep-th]
  24. 24.
    M. Yu. Kalmykov, K.A. Kazakov, P.I. Pronin, K.V. Stepanyantz, Classical Quantum Gravity 15, 3777 (1998). https://doi.org/10.1088/0264-9381/15/12/008, arXiv:hep-th/9809169 [hep-th]
  25. 25.
    A. Nink, Phys. Rev. D91, 044030 (2015).  https://doi.org/10.1103/PhysRevD.91.044030, arXiv:1410.7816 [hep-th]
  26. 26.
    H. Gies, B. Knorr, S. Lippoldt, Phys. Rev. D92, 084020 (2015).  https://doi.org/10.1103/PhysRevD.92.084020, arXiv:1507.08859 [hep-th]
  27. 27.
    N. Ohta, R. Percacci, A.D. Pereira, J. High Energy Phys. 6, 115 (2016).  https://doi.org/10.1007/JHEP06(2016)115, arXiv:1605.00454 [hep-th]
  28. 28.
    N. Ohta, R. Percacci, A.D. Pereira, Eur. Phys. J. C77, 611 (2017).  https://doi.org/10.1140/epjc/s10052-017-5176-z, arXiv:1610.07991 [hep-th]
  29. 29.
    J.D. Gonçalves, T. de Paula Netto, I.L. Shapiro, Phys. Rev. D97, 026015 (2018).  https://doi.org/10.1103/PhysRevD.97.026015, arXiv:1712.03338 [hep-th]
  30. 30.
    N. Ohta, R. Percacci, A.D. Pereira, Phys. Rev. D97, 104039 (2018).  https://doi.org/10.1103/PhysRevD.97.104039, arXiv:1804.01608 [hep-th]
  31. 31.
    G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz, M. Yamada, Phys. Rev. D98, 026027 (2018).  https://doi.org/10.1103/PhysRevD.98.026027, arXiv:1805.09656 [hep-th]
  32. 32.
    G. ’t Hooft, M.J.G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A20, 69 (1974)Google Scholar
  33. 33.
    S.M. Christensen, M.J. Duff, Nucl. Phys. B170, 480 (1980). https://doi.org/10.1016/0550-3213(80)90423-X
  34. 34.
    M.H. Goroff, A. Sagnotti, Nucl. Phys. B266, 709 (1986). https://doi.org/10.1016/0550-3213(86)90193-8 ADSCrossRefGoogle Scholar
  35. 35.
    J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994).  https://doi.org/10.1103/PhysRevLett.72.2996, arXiv:gr-qc/9310024 [gr-qc]
  36. 36.
    K.S. Stelle, Phys. Rev. D16, 953 (1977).  https://doi.org/10.1103/PhysRevD.16.953 ADSGoogle Scholar
  37. 37.
    D. Anselmi, J. High Energy Phys. 6, 086 (2017).  https://doi.org/10.1007/JHEP06(2017)086, arXiv:1704.07728 [hep-th]
  38. 38.
    D. Anselmi, M. Piva, J. High Energy Phys. 05, 027 (2018).  https://doi.org/10.1007/JHEP05(2018)027, arXiv:1803.07777 [hep-th]
  39. 39.
    D. Anselmi, M. Piva, J. High Energy Phys. 11, 021 (2018).  https://doi.org/10.1007/JHEP11(2018)021, arXiv:1806.03605 [hep-th]
  40. 40.
  41. 41.
    A. Salvio, Front. Phys. 6, 77 (2018).  https://doi.org/10.3389/fphy.2018.00077, arXiv:1804.09944 [hep-th]
  42. 42.
    L. Modesto, I.L. Shapiro, Phys. Lett. B755, 279 (2016). https://doi.org/10.1016/j.physletb.2016.02.021, arXiv:1512.07600 [hep-th]
  43. 43.
    S. Weinberg, Chap. 16. in General Relativity, ed. by S.W. Hawking, W. Israel (1979)Google Scholar
  44. 44.
  45. 45.
    A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009). https://doi.org/10.1016/j.aop.2008.08.008, arXiv:0805.2909 [hep-th]
  46. 46.
    K.G. Falls, D.F. Litim, J. Schröder, (2018). arXiv:1810.08550 [gr-qc]
  47. 47.
    A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert, M. Schiffer (2018). https://doi.org/10.1016/j.physletb.2019.01.071, arXiv:1810.02828 [hep-th]
  48. 48.
    M. Reuter, F. Saueressig, Phys. Rev. D65, 065016 (2002).  https://doi.org/10.1103/PhysRevD.65.065016, arXiv:hep-th/0110054 [hep-th]
  49. 49.
    D.F. Litim, Phys. Rev. Lett. 92, 201301 (2004).  https://doi.org/10.1103/PhysRevLett.92.201301. arXiv:hep-th/0312114 [hep-th]
  50. 50.
    A. Codello, R. Percacci, Phys. Rev. Lett. 97, 221301 (2006).  https://doi.org/10.1103/PhysRevLett.97.221301, arXiv:hep-th/0607128 [hep-th]
  51. 51.
    P.F. Machado, F. Saueressig, Phys. Rev. D77, 124045 (2008).  https://doi.org/10.1103/PhysRevD.77.124045, arXiv:0712.0445 [hep-th]
  52. 52.
    D. Benedetti, P.F. Machado, F. Saueressig, Mod. Phys. Lett. A24, 2233 (2009). https://doi.org/10.1142/S0217732309031521, arXiv:0901.2984 [hep-th]
  53. 53.
    D. Benedetti, P.F. Machado, F. Saueressig, Nucl. Phys. B824, 168 (2010). https://doi.org/10.1016/j.nuclphysb.2009.08.023, arXiv:0902.4630 [hep-th]
  54. 54.
    E. Manrique, M. Reuter, F. Saueressig, Ann. Phys. 326, 463 (2011). https://doi.org/10.1016/j.aop.2010.11.006, arXiv:1006.0099 [hep-th]
  55. 55.
    E. Manrique, S. Rechenberger, F. Saueressig, Phys. Rev. Lett. 106, 251302 (2011).  https://doi.org/10.1103/PhysRevLett.106.251302, arXiv:1102.5012 [hep-th]
  56. 56.
    N. Christiansen, D.F. Litim, J.M. Pawlowski, A. Rodigast, Phys. Lett. B728, 114 (2014). https://doi.org/10.1016/j.physletb.2013.11.025, arXiv:1209.4038 [hep-th]
  57. 57.
    K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, (2013). arXiv:1301.4191 [hep-th]
  58. 58.
    D. Benedetti, Europhys. Lett. 102, 20007 (2013). https://doi.org/10.1209/0295-5075/102/20007, arXiv:1301.4422 [hep-th]
  59. 59.
    A. Codello, G. D’Odorico, C. Pagani, Phys. Rev. D89, 081701 (2014).  https://doi.org/10.1103/PhysRevD.89.081701, arXiv:1304.4777 [gr-qc]
  60. 60.
    K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, Phys. Rev. D93, 104022 (2016).  https://doi.org/10.1103/PhysRevD.93.104022, arXiv:1410.4815 [hep-th]
  61. 61.
    N. Christiansen, B. Knorr, J.M. Pawlowski, A. Rodigast, Phys. Rev. D93, 044036 (2016).  https://doi.org/10.1103/PhysRevD.93.044036, arXiv:1403.1232 [hep-th]
  62. 62.
    N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski, M. Reichert, Phys. Rev. D92, 121501 (2015).  https://doi.org/10.1103/PhysRevD.92.121501, arXiv:1506.07016 [hep-th]
  63. 63.
    H. Gies, B. Knorr, S. Lippoldt, F. Saueressig, Phys. Rev. Lett. 116, 211302 (2016).  https://doi.org/10.1103/PhysRevLett.116.211302, arXiv:1601.01800 [hep-th]
  64. 64.
    J. Biemans, A. Platania, F. Saueressig, Phys. Rev. D95, 086013 (2017).  https://doi.org/10.1103/PhysRevD.95.086013, arXiv:1609.04813 [hep-th]
  65. 65.
    N. Christiansen (2016), arXiv:1612.06223 [hep-th]
  66. 66.
    T. Denz, J.M. Pawlowski, M. Reichert, Eur. Phys. J. C78, 336 (2018).  https://doi.org/10.1140/epjc/s10052-018-5806-0, arXiv:1612.07315 [hep-th]
  67. 67.
    B. Knorr, S. Lippoldt, Phys. Rev. D96, 065020 (2017).  https://doi.org/10.1103/PhysRevD.96.065020, arXiv:1707.01397 [hep-th]
  68. 68.
    B. Knorr, Classical Quantum Gravity 35, 115005 (2018). https://doi.org/10.1088/1361-6382/aabaa0, arXiv:1710.07055 [hep-th]
  69. 69.
    N. Christiansen, K. Falls, J.M. Pawlowski, M. Reichert, Phys. Rev. D97, 046007 (2018).  https://doi.org/10.1103/PhysRevD.97.046007, arXiv:1711.09259 [hep-th]
  70. 70.
    K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos, C. Rahmede, Phys. Rev. D97, 086006 (2018).  https://doi.org/10.1103/PhysRevD.97.086006, arXiv:1801.00162 [hep-th]
  71. 71.
    R. Percacci, D. Perini, Phys. Rev. D67, 081503 (2003).  https://doi.org/10.1103/PhysRevD.67.081503, arXiv:hep-th/0207033 [hep-th]
  72. 72.
    R. Percacci, D. Perini, Phys. Rev. D68, 044018 (2003).  https://doi.org/10.1103/PhysRevD.68.044018, arXiv:hep-th/0304222 [hep-th]
  73. 73.
    G. Narain, R. Percacci, Classical Quantum Gravity 27, 075001 (2010). https://doi.org/10.1088/0264-9381/27/7/075001, arXiv:0911.0386 [hep-th]
  74. 74.
    O. Zanusso, L. Zambelli, G.P. Vacca, R. Percacci, Phys. Lett. B689, 90 (2010). https://doi.org/10.1016/j.physletb.2010.04.043, arXiv:0904.0938 [hep-th]
  75. 75.
    A. Eichhorn, H. Gies, New J. Phys. 13, 125012 (2011). https://doi.org/10.1088/1367-2630/13/12/125012, arXiv:1104.5366 [hep-th]
  76. 76.
    A. Eichhorn, Phys. Rev. D86, 105021 (2012).  https://doi.org/10.1103/PhysRevD.86.105021, arXiv:1204.0965 [gr-qc]
  77. 77.
    P. Dona, A. Eichhorn, R. Percacci, Phys. Rev. D89, 084035 (2014).  https://doi.org/10.1103/PhysRevD.89.084035, arXiv:1311.2898 [hep-th]
  78. 78.
    P. Dona, A. Eichhorn, R. Percacci, Can. J. Phys. 93, 988 (2015).  https://doi.org/10.1139/cjp-2014-0574, arXiv:1410.4411 [gr-qc]
  79. 79.
    P. Labus, R. Percacci, G.P. Vacca, Phys. Lett. B753, 274 (2016). https://doi.org/10.1016/j.physletb.2015.12.022, arXiv:1505.05393 [hep-th]
  80. 80.
    K.-Y. Oda, M. Yamada, Classical Quantum Gravity 33, 125011 (2016). https://doi.org/10.1088/0264-9381/33/12/125011, arXiv:1510.03734 [hep-th]
  81. 81.
    J. Meibohm, J.M. Pawlowski, M. Reichert, Phys. Rev. D93, 084035 (2016).  https://doi.org/10.1103/PhysRevD.93.084035, arXiv:1510.07018 [hep-th]
  82. 82.
    P. Dona, A. Eichhorn, P. Labus, R. Percacci, Phys. Rev. D93, 044049 (2016) [Erratum: Phys. Rev. D93(12), 129904 (2016)].  https://doi.org/10.1103/PhysRevD.93.129904;;10.1103/PhysRevD.93.044049, arXiv:1512.01589 [gr-qc]
  83. 83.
    J. Meibohm, J.M. Pawlowski, Eur. Phys. J. C76, 285 (2016).  https://doi.org/10.1140/epjc/s10052-016-4132-7, arXiv:1601.04597 [hep-th]
  84. 84.
    A. Eichhorn, A. Held, J. M. Pawlowski, Phys. Rev. D94, 104027 (2016).  https://doi.org/10.1103/PhysRevD.94.104027, arXiv:1604.02041 [hep-th]
  85. 85.
    A. Eichhorn, S. Lippoldt, Phys. Lett. B767, 142 (2017). https://doi.org/10.1016/j.physletb.2017.01.064, arXiv:1611.05878 [gr-qc]
  86. 86.
    J. Biemans, A. Platania, F. Saueressig, J. High Energy Phys. 5, 093 (2017).  https://doi.org/10.1007/JHEP05(2017)093, arXiv:1702.06539 [hep-th]
  87. 87.
    Y. Hamada, M. Yamada, J. High Energy Phys. 8, 070 (2017).  https://doi.org/10.1007/JHEP08(2017)070, arXiv:1703.09033 [hep-th]
  88. 88.
    N. Christiansen, A. Eichhorn, A. Held, Phys. Rev. D96, 084021 (2017).  https://doi.org/10.1103/PhysRevD.96.084021, arXiv:1705.01858 [hep-th]
  89. 89.
    A. Eichhorn, A. Held, Phys. Rev. D96, 086025 (2017).  https://doi.org/10.1103/PhysRevD.96.086025, arXiv:1705.02342 [gr-qc]
  90. 90.
    A. Eichhorn, S. Lippoldt, V. Skrinjar, Phys. Rev. D97, 026002 (2018).  https://doi.org/10.1103/PhysRevD.97.026002, arXiv:1710.03005 [hep-th]
  91. 91.
    N. Christiansen, D.F. Litim, J.M. Pawlowski, M. Reichert, Phys. Rev. D97, 106012 (2018).  https://doi.org/10.1103/PhysRevD.97.106012, arXiv:1710.04669 [hep-th]
  92. 92.
    A. Eichhorn, Y. Hamada, J. Lumma, M. Yamada, Phys. Rev. D97, 086004 (2018).  https://doi.org/10.1103/PhysRevD.97.086004, arXiv:1712.00319 [hep-th]
  93. 93.
    N. Alkofer, F. Saueressig, Ann. Phys. 396, 173 (2018). https://doi.org/10.1016/j.aop.2018.07.017, arXiv:1802.00498 [hep-th]
  94. 94.
    A. Eichhorn, P. Labus, J.M. Pawlowski, M. Reichert, SciPost Phys. 5, 031 (2018).  https://doi.org/10.21468/SciPostPhys.5.4.031, arXiv:1804.00012 [hep-th]
  95. 95.
    A. Eichhorn, S. Lippoldt, M. Schiffer (2018). arXiv:1812.08782 [hep-th]
  96. 96.
    J.M. Pawlowski, M. Reichert, C. Wetterich, M. Yamada (2018). arXiv:1811.11706 [hep-th]
  97. 97.
    M. Shaposhnikov, C. Wetterich, Phys. Lett. B683, 196 (2010). https://doi.org/10.1016/j.physletb.2009.12.022, arXiv:0912.0208 [hep-th]
  98. 98.
    A. Eichhorn, A. Held, C. Wetterich, Phys. Lett. B782, 198 (2018). https://doi.org/10.1016/j.physletb.2018.05.016, arXiv:1711.02949 [hep-th]
  99. 99.
    A. Eichhorn, A. Held, Phys. Rev. Lett. 121, 151302 (2018).  https://doi.org/10.1103/PhysRevLett.121.151302, arXiv:1803.04027 [hep-th]
  100. 100.
    U. Harst, M. Reuter, J. High Energy Phys. 5, 119 (2011).  https://doi.org/10.1007/JHEP05(2011)119, arXiv:1101.6007 [hep-th]
  101. 101.
    N. Christiansen, A. Eichhorn, Phys. Lett. B770, 154 (2017). https://doi.org/10.1016/j.physletb.2017.04.047, arXiv:1702.07724 [hep-th]
  102. 102.
    A. Eichhorn, F. Versteegen, J. High Energy Phys. 1, 030 (2018).  https://doi.org/10.1007/JHEP01(2018)030, arXiv:1709.07252 [hep-th]
  103. 103.
    C. Wetterich, M. Yamada, Phys. Lett. B770, 268 (2017). https://doi.org/10.1016/j.physletb.2017.04.049, arXiv:1612.03069 [hep-th]
  104. 104.
    P. Di Francesco, P.H. Ginsparg, J. Zinn-Justin, Phys. Rep. 254, 1 (1995). https://doi.org/10.1016/0370-1573(94)00084-G, arXiv:hep-th/9306153 [hep-th]
  105. 105.
    M.R. Douglas, S.H. Shenker, Nucl. Phys. B335, 635 (1990), [635 (1989)]. https://doi.org/10.1016/0550-3213(90)90522-F
  106. 106.
    E. Brezin, V.A. Kazakov, Phys. Lett. B236, 144 (1990). https://doi.org/10.1016/0370-2693(90)90818-Q
  107. 107.
    D.J. Gross, A.A. Migdal, Phys. Rev. Lett. 64, 127 (1990), [127 (1989)].  https://doi.org/10.1103/PhysRevLett.64.127
  108. 108.
    D.J. Gross, A.A. Migdal, Nucl. Phys. B340, 333 (1990), [333 (1989)]. https://doi.org/10.1016/0550-3213(90)90450-R
  109. 109.
    E. Brezin, J. Zinn-Justin, Phys. Lett. B288, 54 (1992). https://doi.org/10.1016/0370-2693(92)91953-7, arXiv:hep-th/9206035 [hep-th]
  110. 110.
    A. Eichhorn, T. Koslowski, Phys. Rev. D88, 084016 (2013).  https://doi.org/10.1103/PhysRevD.88.084016, arXiv:1309.1690 [gr-qc]
  111. 111.
    A. Eichhorn, T. Koslowski, A.D. Pereira, Universe 5, 53 (2019).  https://doi.org/10.3390/universe5020053, arXiv:1811.12909 [gr-qc]
  112. 112.
    J. Ambjorn, A. Goerlich, J. Jurkiewicz, R. Loll, Phys. Rep. 519, 127 (2012). https://doi.org/10.1016/j.physrep.2012.03.007, arXiv:1203.3591 [hep-th]
  113. 113.
    J. Ambjorn, S. Jordan, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 107, 211303 (2011).  https://doi.org/10.1103/PhysRevLett.107.211303, arXiv:1108.3932 [hep-th]
  114. 114.
    J. Ambjorn, S. Jordan, J. Jurkiewicz, R. Loll, Phys. Rev. D85, 124044 (2012).  https://doi.org/10.1103/PhysRevD.85.124044, arXiv:1205.1229 [hep-th]
  115. 115.
    J. Ambjorn, D. Coumbe, J. Gizbert-Studnicki, A. Gorlich, J. Jurkiewicz, Phys. Rev. D95, 124029 (2017).  https://doi.org/10.1103/PhysRevD.95.124029, arXiv:1704.04373 [hep-lat]
  116. 116.
    J. Laiho, S. Bassler, D. Coumbe, D. Du, J.T. Neelakanta, Phys. Rev. D96, 064015 (2017).  https://doi.org/10.1103/PhysRevD.96.064015, arXiv:1604.02745 [hep-th]
  117. 117.
    J. Ambjorn, B. Durhuus, T. Jonsson, Mod. Phys. Lett. A6, 1133 (1991). https://doi.org/10.1142/S0217732391001184
  118. 118.
    N. Godfrey, M. Gross, Phys. Rev. D43, 1749 (1991).  https://doi.org/10.1103/PhysRevD.43.R1749
  119. 119.
    M. Gross, Nucl. Phys. Proc. Suppl. 25A, 144 (1992). https://doi.org/10.1016/S0920-5632(05)80015-5
  120. 120.
    V. Rivasseau, Proceedings of the 8th International Conference on Progress in Theoretical Physics (ICPTP 2011). AIP Conference Proceedings, vol. 1444 (Constantine, 2012), p. 18. https://doi.org/10.1063/1.4715396, arXiv:1112.5104 [hep-th]
  121. 121.
    R. Gurau, J.P. Ryan, SIGMA 8, 020 (2012).  https://doi.org/10.3842/SIGMA.2012.020, arXiv:1109.4812 [hep-th]
  122. 122.
  123. 123.
  124. 124.
    R. Gurau, Ann. Henri Poincare 12, 829 (2011). https://doi.org/10.1007/s00023-011-0101-8, arXiv:1011.2726 [gr-qc]
  125. 125.
    R. Gurau, V. Rivasseau, Europhys. Lett. 95, 50004 (2011). https://doi.org/10.1209/0295-5075/95/50004, arXiv:1101.4182 [gr-qc]
  126. 126.
    R. Gurau, Commun. Math. Phys. 304, 69 (2011). https://doi.org/10.1007/s00220-011-1226-9, arXiv:0907.2582 [hep-th]
  127. 127.
    R. Gurau, Ann. Henri Poincare 13, 399 (2012). https://doi.org/10.1007/s00023-011-0118-z, arXiv:1102.5759 [gr-qc]
  128. 128.
    V. Bonzom, R. Gurau, V. Rivasseau, Phys. Rev. D85, 084037 (2012).  https://doi.org/10.1103/PhysRevD.85.084037, arXiv:1202.3637 [hep-th]
  129. 129.
    S. Carrozza, A. Tanasa, Lett. Math. Phys. 106, 1531 (2016). https://doi.org/10.1007/s11005-016-0879-x, arXiv:1512.06718 [math-ph]
  130. 130.
    A. Eichhorn, T. Koslowski, Phys. Rev. D90, 104039 (2014).  https://doi.org/10.1103/PhysRevD.90.104039, arXiv:1408.4127 [gr-qc]
  131. 131.
    A. Eichhorn, T. Koslowski, J. Lumma, A.D. Pereira (2018). arXiv:1811.00814 [gr-qc]
  132. 132.
    D. Benedetti, J. Ben Geloun, D. Oriti, J. High Energy Phys. 3, 084 (2015).  https://doi.org/10.1007/JHEP03(2015)084, arXiv:1411.3180 [hep-th]
  133. 133.
    D. Benedetti, V. Lahoche, Classical Quantum Gravity 33, 095003 (2016). https://doi.org/10.1088/0264-9381/33/9/095003, arXiv:1508.06384 [hep-th]
  134. 134.
    J. Ben Geloun, R. Martini, D. Oriti, Europhys. Lett. 112, 31001 (2015). https://doi.org/10.1209/0295-5075/112/31001, arXiv:1508.01855 [hep-th]
  135. 135.
    J. Ben Geloun, R. Martini, D. Oriti, Phys. Rev. D94, 024017 (2016).  https://doi.org/10.1103/PhysRevD.94.024017, arXiv:1601.08211 [hep-th]
  136. 136.
  137. 137.
    V. Lahoche, D. Ousmane Samary, Phys. Rev. D95, 045013 (2017).  https://doi.org/10.1103/PhysRevD.95.045013, arXiv:1608.00379 [hep-th]
  138. 138.
    S. Carrozza, V. Lahoche, Classical Quantum Gravity 34, 115004 (2017). https://doi.org/10.1088/1361-6382/aa6d90, arXiv:1612.02452 [hep-th]
  139. 139.
    S. Carrozza, V. Lahoche, D. Oriti, Phys. Rev. D96, 066007 (2017).  https://doi.org/10.1103/PhysRevD.96.066007, arXiv:1703.06729 [gr-qc]
  140. 140.
    J. Ben Geloun, T.A. Koslowski, D. Oriti, A.D. Pereira, Phys. Rev. D97, 126018 (2018).  https://doi.org/10.1103/PhysRevD.97.126018, arXiv:1805.01619 [hep-th]
  141. 141.
    V. Lahoche, D. Ousmane Samary, Classical Quantum Gravity 35, 195006 (2018). https://doi.org/10.1088/1361-6382/aad83f, arXiv:1803.09902 [hep-th]
  142. 142.
    V. Lahoche, D. Ousmane Samary, Phys. Rev. D98, 126010 (2018).  https://doi.org/10.1103/PhysRevD.98.126010, arXiv:1809.00247 [hep-th]
  143. 143.
    V. Lahoche, D. Ousmane Samary, Nucl. Phys. B940, 190 (2019). https://doi.org/10.1016/j.nuclphysb.2019.01.005, arXiv:1809.06081 [hep-th]
  144. 144.
    V. Lahoche, D.O. Samary, Universe 5, 86 (2019).  https://doi.org/10.3390/universe5030086, arXiv:1812.00905 [hep-th]
  145. 145.
    V. Lahoche, D.O. Samary (2019). arXiv:1904.05655 [hep-th]
  146. 146.
    T. Krajewski, R. Toriumi, J. Phys. A49, 385401 (2016). https://doi.org/10.1088/1751-8113/49/38/385401, arXiv:1511.09084 [gr-qc]
  147. 147.
    T. Krajewski, R. Toriumi, SIGMA 12, 068 (2016).  https://doi.org/10.3842/SIGMA.2016.068, arXiv:1603.00172 [gr-qc]
  148. 148.
    A. Eichhorn, Classical Quantum Gravity 35, 044001 (2018). https://doi.org/10.1088/1361-6382/aaa0a3, arXiv:1709.10419 [gr-qc]
  149. 149.
    A. Eichhorn, Proceedings of the 9th International Conference on Spacetime—Matter–Quantum Mechanics: From Discrete Structures and Dynamics to Top-Down Causation (DICE2018) (Castiglioncello, 2019). arXiv:1902.00391 [gr-qc]
  150. 150.
    J.M. Pawlowski, D. Stock, Phys. Rev. D98, 106008 (2018).  https://doi.org/10.1103/PhysRevD.98.106008, arXiv:1807.10512 [hep-th]
  151. 151.
    A. Adeifeoba, A. Eichhorn, A. Platania, Classical Quantum Gravity 35, 225007 (2018). https://doi.org/10.1088/1361-6382/aae6ef, arXiv:1808.03472 [gr-qc]
  152. 152.
    A. Platania (2019). arXiv:1903.10411 [gr-qc]
  153. 153.
    L. Bosma, B. Knorr, F. Saueressig (2019). arXiv:1904.04845 [hep-th]
  154. 154.
    A. Bonanno, S.J. Gabriele Gionti, A. Platania, Classical Quantum Gravity 35, 065004 (2018). https://doi.org/10.1088/1361-6382/aaa535, arXiv:1710.06317 [gr-qc]
  155. 155.
    G. Gubitosi, R. Ooijer, C. Ripken, F. Saueressig, J. Cosmol. Astropart. Phys. 1812, 004 (2018). https://doi.org/10.1088/1475-7516/2018/12/004, arXiv:1806.10147 [hep-th]

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations