Fuzziness in Information Extracted from Tweets’ Hashtags and Keywords

  • Shahnaz N. ShahbazovaEmail author
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 391)


Social media becomes a part of our lives. People use different form of it to express their opinions on variety of ideas, events and facts. Twitter, as an example of such media, is commonly used to post short messages—tweets—related to variety of subjects. The paper proposes on application of fuzzy-based methodologies to process tweets, and to interpret information extracted from those tweets. We state that the obtained knowledge is fully explored and better comprehend when fuzziness is used. In particular, we analyze hashtags and keywords to extract useful knowledge. We look at the popularity of hashtags and changes of their popularity over time. Further, we process hashtags and keywords to build fuzzy signatures representing concepts associated with tweets.


Hashtags Tweets Fuzziness Fuzzy sets Fuzzy clustering Fuzzy signatures Hashtag popularity Cluster quality 


  1. 1. Accessed 8th May 2015
  2. 2.
    L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  3. 3. Accessed 8th May 2015
  4. 4. Accessed 8th May 2015
  5. 5.
    G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, (Prentice Hall, 1995)Google Scholar
  6. 6.
    W. Pedrycz, F. Gomide, Fuzzy Systems Engineering: Toward Human-Centric Computing, (Wiley-IEEE Press, 2007)Google Scholar
  7. 7.
    A. Chaturvedi, P. Green, J. Carroll, K-modes clustering. J. Classif. 18(1), 35–55 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  9. 9.
    A.K. Jani, Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  10. 10.
    K.L. Wu, M.S. Yang, Alternative c-means clustering algorithms. Pattern Recogn. 35, 2267–2278 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Baraldi, P. Blonda, A survey of fuzzy clustering algorithms for pattern recognition. IEEE Trans. Syst Man, Cybern. Part B Cybern. 29(6), 778–785 (1999)Google Scholar
  12. 12.
    J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum Press, New York, 1981)CrossRefGoogle Scholar
  13. 13.
    Z.X. Huang, M.K. Ng, A fuzzy k-modes algorithm for clustering categorical data. IEEE Trans. Fuzzy Syst. 7(4), 446–452 (1999)CrossRefGoogle Scholar
  14. 14.
    L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, New York, 1990)CrossRefGoogle Scholar
  15. 15. Accessed 8th May 2015
  16. 16.
    P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  17. 17.
    G. Pison, A. Struyf, P.J. Rousseeuw, Displaying a clustering with CLUSPLOT. Comput. Stat. Data Anal. 30, 381–392 (1999)CrossRefGoogle Scholar
  18. 18.
    L.T. Jolliffe, Principal Component Analysis, 2nd edn. (Springer, Berlin, 2002)Google Scholar
  19. 19.
    M.Z. Reformat, R.R. Yager, in Using Tagging in Social Networks to Find Groups of Compatible Users, 2013 IFSA-NAFIPS Join Congress, Edmonton, Canada, 24–28 June 2013Google Scholar
  20. 20.
    R.R. Yager, M.Z. Reformat, Looking for like-minded individuals in social networks using tagging and fuzzy sets. IEEE Trans. Fuzzy Syst. 21(4), 672–687 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Pal, B. Mondal, N. Bhattacharyya, S. Raha, Similarity in fuzzy systems. J. Uncertainty Anal. Appl. 2(1) (2014)Google Scholar
  22. 22.
    C.P. Pappis, N.I. Karacapilidis, A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets Syst. 56(2), 171–174 (1993)MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Gerstenkorn, J. Manko, Correlation of intuitionistic fuzzy sets. Fuzzy Sets Syst. 44(1), 39–43 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)CrossRefGoogle Scholar
  25. 25.
    D. Dumitrescu, A definition of an informational energy in fuzzy sets theory. Stud. Univ. Babes-Bolyai Math. 22(2), 57–59 (1977)MathSciNetzbMATHGoogle Scholar
  26. 26.
    D. Dumitrescu, Fuzzy correlation. Studia Univ. Babes-Bolyai Math. 23, 41–44 (1978)MathSciNetzbMATHGoogle Scholar
  27. 27.
    F.Y. Cao, J.Y. Liang, L. Bai et al., A framework for clustering categorical time-evolving data. IEEE Trans. Fuzzy Syst. 18(5), 872–882 (2010)CrossRefGoogle Scholar
  28. 28.
    S.N. Shahbazova, Development of the knowledge base learning system for distance education. Int. J. Intell. Syst. 27(4), 343–354 (2012)CrossRefGoogle Scholar
  29. 29.
    S.N. Shahbazova, Application of fuzzy sets for control of student knowledge, Appl. Comput. Math. Int. J. 10(1), 195–208 (2011). ISSN 1683–3511. (Special issue on fuzzy set theory and applications)Google Scholar
  30. 30.
    O. Koshelova, S.N. Shahbazova, “Fuzzy” multiple-choice quizzes and how to grade them. J. Uncertain Syst. 8(3), 216–221 (2014). Online at:
  31. 31.
    A.M. Abbasov, S.N. Shahbazova, Informational modeling of the behavior of a teacher in the learning process based on fuzzy logic. Int. J. Intell. Syst. 31(1), 3–18 (2015)CrossRefGoogle Scholar
  32. 32.
    S. N. Shahbazova, Modeling of creation of the complex on intelligent information systems learning and knowledge control (IISLKC). Int. J. Intell. Syst. 29(4), 307–319 (2014)CrossRefGoogle Scholar
  33. 33.
    L.A. Zadeh, A.M. Abbasov, S.N. Shahbazova, Fuzzy-based techniques in human-like processing of social network data. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 23(1), 1–14 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Information Technology and ProgrammingAzerbaijan Technical UniversityBakuAzerbaijan

Personalised recommendations