Advertisement

Introduction to RF Power Amplifier Design and Architecture

  • Karun Rawat
  • Patrick Roblin
  • Shiban Kishen Koul
Chapter
  • 37 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter discusses basic power amplifier (PA) design parameters along with high-efficiency PA designs based on switch-mode operation and harmonic terminations. In addition, continuum of some classes of operation is also discussed for bandwidth enhancement in PAs. In order to develop basic understanding of Doherty PA and Chireix outphasing PA, a brief discussion on their architecture is also presented in this chapter. This chapter also introduces various linearization schemes which will be further discussed in detail for broadband applications in the later chapters. A basic architecture of delta-sigma modulation (DSM)-based transmitter is also presented which will be comprehensively discussed in later chapters for wireless transmission applications.

Keywords

Nonlinear distortion parameters Classes of operation Switch-mode power amplifiers Harmonic injection Doherty power amplifier Chireix outphasing power amplifier Predistortion Feedforward architecture Delta-sigma transmitters 

References

  1. 1.
    Martins, P., Cabral, P. M., Carvalho, N. B., & Pedro, J. C. (2006). A metric for the quantification of memory effects in power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4432–4439.CrossRefGoogle Scholar
  2. 2.
    Rawat, M., Rawat, K., & Ghannouchi, F. M. (2010). Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE Transactions on Microwave Theory and Techniques, 58(1), 95–104.CrossRefGoogle Scholar
  3. 3.
    Landin, P. N., Isaksson, M., & Handel, P. (2008). Comparison of evaluation criteria for power amplifier behavioral modeling. In IEEE MTT-S International Microwave Symposium Digest (pp. 1441–1444). Washington, DC: IEEE.Google Scholar
  4. 4.
    Baxandall, P. J. (1959). Transistor sine-wave LC oscillators. Some general considerations and new developments. Proceedings of the IEE-Part B: Electronic and Communication Engineering, 106(16S), 748–758.Google Scholar
  5. 5.
    Grebennikov, A., Sokal, N. O., & Franco, M. J. (2012). Switch mode RF and microwave power amplifiers. Cambridge: Academic Press.Google Scholar
  6. 6.
    Sokal, N. O., & Sokal, A. D. (1975). Class E a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE Journal of Solid-State Circuits, 10(3), 168–176.CrossRefGoogle Scholar
  7. 7.
    Raab, F. (1977). Idealized operation of the Class E tuned power amplifier. IEEE Transactions on Circuits and Systems, 24(12), 725–735.CrossRefGoogle Scholar
  8. 8.
    Grebennikov, A. (2005). RF and microwave power amplifier design. New York: McGraw-Hill.Google Scholar
  9. 9.
    Kakkad, P., Aggrawal, E., & Rawat, K. (2017). De-embedded model based Class-E power amplifier using waveform engineering. In 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1–4). Washington, DC: IEEE.Google Scholar
  10. 10.
    Gustavsson, U., Eriksson, T., Nemati, H. M., Singerl, P., & Fager, C. (2011). An RF carrier bursting system using partial quantization noise cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(3), 515–528.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Helaoui, M., Hatami, S., Negra, R., & Ghannouchi, F. M. (2008). A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(11), 1129–1133.CrossRefGoogle Scholar
  12. 12.
    Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2011). Time-interleaved delta-sigma modulator for wideband digital GHz transmitters design and SDR applications. Progress in Electromagnetics Research B, 34, 263–281.CrossRefGoogle Scholar
  13. 13.
    Jayaraman, A., Chen, P. F., Hanington, G., Larson, L., & Asbeck, P. (1998). Linear high-efficiency microwave power amplifier using bandpass delta-sigma modulators. IEEE Microwave and Guided Wave Letters, 8(3), 121–123.CrossRefGoogle Scholar
  14. 14.
    Johnson, T., & Stapleton, S. P. (2006). RF class-D amplification with bandpass sigma–delta modulator drive signals. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(12), 2507–2520.CrossRefGoogle Scholar
  15. 15.
    Kumar, N., Poonia, J. D., & Rawat, K. (2017). Class S power amplifier based on CSCD with delta-sigma modulation. In 2017 IEEE Applied Electromagnetics Conference (AEMC) (pp. 1–2). Washington, DC: IEEE.Google Scholar
  16. 16.
    Tyler, V. J. (1958). A new high-efficiency high power amplifier. Marconi Review, 21(130), 96–109.Google Scholar
  17. 17.
    Bowers, D. F. (1982). HEAD—A high efficiency amplitude-modulation system for broadcasting transmitters. Communication and Broadcasting, 7(2), 15–23.Google Scholar
  18. 18.
    Raab, H. (2001). Class E, class C, and class F power amplifiers based upon a finite number of harmonics. IEEE Transactions on Microwave Theory and Techniques, 49(8), 1462–1468.CrossRefGoogle Scholar
  19. 19.
    Raab, F. H. (1997). Class F power amplifiers with maximally flat waveforms. IEEE Transactions on Microwave Theory and Techniques, 45, 2007–2012.CrossRefGoogle Scholar
  20. 20.
    Raab, F. H. (2001). Maximum efficiency and output of class F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 47, 1162–1166.CrossRefGoogle Scholar
  21. 21.
    Grebennikov, A. V. (2000). Circuit design technique for high efficiency class F amplifiers. In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017) (Vol. 2, pp. 771–774). Washington, DC: IEEE.CrossRefGoogle Scholar
  22. 22.
    Carrubba, V. (2012). Novel highly efficient broadband continuous power amplifier modes (PhD thesis). Cardiff UniversityGoogle Scholar
  23. 23.
    Cripps, S. C., Tasker, P. J., Clarke, A. L., Lees, J., & Benedikt, J. (2009). On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microwave and Wireless Components Letters, 19(10), 665–667.CrossRefGoogle Scholar
  24. 24.
    Steve, C., & Cripps, R. F. (2006). Power amplifiers for wireless communications (2nd ed.). Norwood, MA, ISBN: 0-89006-989-1: Artech House Publishers Inc..Google Scholar
  25. 25.
    Carrubba, V., et al. (2011). On the extension of the continuous class-F mode power amplifier. IEEE Transactions on Microwave Theory and Techniques, 59(5), 1294–1303.CrossRefGoogle Scholar
  26. 26.
    Carrubba, V., Lees, J., Benedikt, J., Tasker, P. J., & Cripps, S. C. (2011). A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth. In 2011 IEEE MTT-S International Microwave Symposium (pp. 1–4). Washington, DC: IEEE.Google Scholar
  27. 27.
    Carrubba, V., Clarke, A. L., Akmal, M., Lees, J., Benedikt, J., Tasker, P. J., & Cripps, S. C. (2010). The continuous class-F mode power amplifier. In The 40th European Microwave Conference (pp. 1675–1677). Washington, DC: IEEE.Google Scholar
  28. 28.
    Aggrawal, E., Rawat, K., & Roblin, P. (2017). Investigating continuous class-F power amplifier using nonlinear embedding model. IEEE Microwave and Wireless Components Letters, 27(6), 593–595.CrossRefGoogle Scholar
  29. 29.
    Chen, J., He, S., You, F., Tong, R., & Peng, R. (2014). Design of broadband high efficiency power amplifiers based on series of continuous modes. IEEE Microwave and Wireless Components Letters, 24(9), 631–633.CrossRefGoogle Scholar
  30. 30.
    Tuffy, N., Guan, L., Zhu, A., & Brazil, T. J. (2012). A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1952–1963.CrossRefGoogle Scholar
  31. 31.
    Aggrawal, E., Saxena, S., & Rawat, K. (2016). Broadband power amplifier design by exploring design space of continuous class-F mode. In 2016 Asia-Pacific Microwave Conference (APMC) 5th–9th December, 2016, New Delhi, India (pp. 1–4). Washington, DC: IEEE.Google Scholar
  32. 32.
    Saxena, S., Rawat, K., & Roblin, P. (2017). Continuous Class-B/J power amplifier using nonlinear embedding technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(7), 837–841.CrossRefGoogle Scholar
  33. 33.
    Özen, M., Jos, R., & Fager, C. (2012). Continuous class-E power amplifier modes. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(11), 731–735.Google Scholar
  34. 34.
    Fan, C.-W., & Cheng, K.-K. (2002). Theoretical and experimental study of amplifier linearization based on harmonic and baseband signal injection technique. IEEE Transactions on Microwave Theory and Techniques, 50(7), 1801–1806.CrossRefGoogle Scholar
  35. 35.
    Zivkovic, Z., & Markovic, A. (1986). Increasing the efficiency of the high-power triode HF amplifier -why not with the second harmonic? IEEE Transactions on Broadcasting, 32(1), 5–10.CrossRefGoogle Scholar
  36. 36.
    Zivkovic-Dzunja, Z., & Markovic, A. (1989). Plate and grid modulated HF high-power tuned amplifier with increased efficiency. IEEE Transactions on Broadcasting, 35, 97–107.CrossRefGoogle Scholar
  37. 37.
    Willems, D. A., Griffin, E. L., Bahl, I. J., & Pollman, M. D. (1992). High efficiency harmonic injection power amplifier. U.S. Patent No. 5,172,072.Google Scholar
  38. 38.
    AlMuhaisen, A., Wright, P., Lees, J., Tasker, P. J., Cripps, S. C., & Benedikt, J. (2010). Novel wide band high-efficiency active harmonic injection power amplifier concept. In 2010 IEEE MTT-S International Microwave Symposium (pp. 664–667). Washington, DC: IEEE.CrossRefGoogle Scholar
  39. 39.
    Dani, A., Roberg, M., & Popovic, Z. (2012). Efficiency and linearity of power amplifiers with external harmonic injection. In 2012 IEEE/MTT-S International Microwave Symposium Digest (pp. 1–3). Washington, DC: IEEE. Google Scholar
  40. 40.
    AlMuhaisen, A., Lees, J., Cripps, S. C., Tasker, P. J., & Benedikt, J. (2011). Wide band high-efficiency power amplifier design. In 2011 6th European Microwave Integrated Circuit Conference (pp. 184–187). Washington, DC: IEEE.Google Scholar
  41. 41.
    Dani, A., Michael, R., & Popovic, Z. (2012). PA efficiency and linearity enhancement using external harmonic injection. IEEE Transactions on Microwave Theory and Techniques, 60(12), 4097–4106.CrossRefGoogle Scholar
  42. 42.
    Seo, M., Lee, H., Gu, J., Kim, H., Ham, J., Choi, W., & Yang, Y. (2014). High-efficiency power amplifier using an active second-harmonic injection technique under optimized third-harmonic termination. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(8), 549–553.CrossRefGoogle Scholar
  43. 43.
    Alizadeh, A., Yaghoobi, M., & Medi, A. (2017). Class-J2 power amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(8), 1989–2002.CrossRefGoogle Scholar
  44. 44.
    Asha Latha, Y. M., Rawat, K., Helaoui, M., & Ghannouchi, F. M. (2019). Broadband continuous mode power amplifier with on-board harmonic injection. IET Microwaves, Antenna & Propagation, 13, 1402–1407.  https://doi.org/10.1049/iet-map.2018.5885.CrossRefGoogle Scholar
  45. 45.
    Doherty, W. H. (1936). A new high efficiency power amplifier for modulated waves. Proceedings of the Institute of Radio Engineers, 24(9), 1163–1182.Google Scholar
  46. 46.
    Raab, F. H. (1987). Efficiency of Doherty RF power-amplifier systems. IEEE Transactions on Broadcasting, 33(3), 77–83.CrossRefGoogle Scholar
  47. 47.
    Kim, B., Kim, J., Kim, I., & Cha, J. (2006). The Doherty power amplifier. IEEE Microwave Magazine, 7(5), 42–50.CrossRefGoogle Scholar
  48. 48.
    Jang, H., Roblin, P., Quindroit, C., Lin, Y., & Pond, R. D. (2014). Asymmetric Doherty power amplifier designed using model-based nonlinear embedding. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3436–3451.CrossRefGoogle Scholar
  49. 49.
    Raab, F. H., et al. (2002). Power amplifiers and transmitters for RF and microwave. IEEE Transactions on Microwave Theory and Techniques, 50(3), 814–826.CrossRefGoogle Scholar
  50. 50.
    Wu, D. Y. T., & Boumaiza, S. (2012). A modified Doherty configuration for broadband amplification using symmetrical devices. IEEE Transactions on Microwave Theory and Techniques, 60(10), 3201–3213.CrossRefGoogle Scholar
  51. 51.
    Sweeney, R. (2008). Practical magic. IEEE Microwave Magazine, 9(2), 73–82.CrossRefGoogle Scholar
  52. 52.
    Bousnina, S. (2009). Analysis and design of high-efficiency variable conduction angle doherty amplifier. IET Microwaves, Antennas & Propagation, 3(3), 416–425.CrossRefGoogle Scholar
  53. 53.
    Rawat, K., Hashmi, M. S., & Ghannouchi, F. M. (2012). Double the band and optimize. IEEE Microwave Magazine, 13(2), 69–82.CrossRefGoogle Scholar
  54. 54.
    Iwamoto, M., Williams, A., Chen, P.-F., Metzger, A. G., Larson, L. E., & Asbeck, P. M. (2001). An extended Doherty amplifier with high efficiency over a wide power range. IEEE Transactions on Microwave Theory and Techniques, 49(12), 2472–2479.CrossRefGoogle Scholar
  55. 55.
    Kim, B., Kim, I., & Moon, J. (2010). Advanced Doherty architecture. IEEE Microwave Magazine, 11(5), 72–86.CrossRefGoogle Scholar
  56. 56.
    Ghosh, S., & Rawat, K. (2018). A wideband two-stage Doherty power amplifier at high back-off by exploring feasible design space. International Journal of RF and Microwave Computer-Aided Engineering, 28(9), E21528.CrossRefGoogle Scholar
  57. 57.
    Srirattana, N., Raghavan, A., Heo, D., Allen, P. E., & Laskar, J. (2009). Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications. IEEE Transactions on Microwave Theory and Techniques, 53(3), 852–859.CrossRefGoogle Scholar
  58. 58.
    Neo, W. C. E., Qureshi, J., Pelk, M. J., Gajadharsing, J. R., Pengelly, R. S., & de Vreede, L. C. N. (2007). A mixed signal approach towards linear and efficient-way Doherty amplifiers. IEEE Transactions on Microwave Theory and Techniques, 55(5), 866–879.Google Scholar
  59. 59.
    Pelk, M. J., Neo, W. C. E., Gajadharsing, J. R., Pengelly, R. S., & de Vreede, L. C. N. (2008). A high-efficiency 100-W GaN three-way Doherty amplifier for base-station applications. IEEE Transactions on Microwave Theory and Techniques, 56(7), 1582–1591.CrossRefGoogle Scholar
  60. 60.
    Nghiem, X. A., Guan, J., & Negra, R. (2014). Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications. In 2014 IEEE MTT-S International Microwave Symposium (IMS2014). Washington, DC: IEEE.Google Scholar
  61. 61.
    Gajadharsing, J. (2009). Recent advances in Doherty amplifiers for wireless infrastructure. In IEEE MTT-S International Microwave Symposium Workshop WSC.Google Scholar
  62. 62.
    Kim, I., Moon, J., Jee, S., & Kim, B. (2010). Optimized design of a highly efficient three-stage Doherty PA using gate adaptation. IEEE Transactions on Microwave Theory and Techniques, 58(10), 2562–2574.CrossRefGoogle Scholar
  63. 63.
    Barthwal, A., Ajmera, G., Rawat, K., Basu, A., & Koul, S. K. (2014). Design scheme for dual-band three stage Doherty power amplifiers. In 2014 IEEE International Microwave and RF Conference (IMaRC). Washington, DC: IEEE.Google Scholar
  64. 64.
    Golestaneh, H., Malekzadeh, F. A., & Boumaiza, S. (2013). An extended bandwidth three-way Doherty power amplifier. IEEE Transactions on Microwave Theory and Techniques, 61(9), 3318–3328.CrossRefGoogle Scholar
  65. 65.
    Barthwal, A., Rawat, K., & Koul, S. K. (2015). Bandwidth enhancement of three-stage Doherty power amplifier using symmetric devices. IEEE Transactions on Microwave Theory and Techniques, 63(8), 2399–2410.CrossRefGoogle Scholar
  66. 66.
    Barthwal, A., Rawat, K., & Koul, S. K. (2018). A design strategy for bandwidth enhancement in three-stage Doherty power amplifier with extended dynamic range. IEEE Transactions on Microwave Theory and Techniques, 66(2), 1024–1033.CrossRefGoogle Scholar
  67. 67.
    Chireix, H. (1935). High power outphasing modulation. Proceedings of the Institute of Radio Engineers, 23(11), 1370–1392.Google Scholar
  68. 68.
    Cox, D. (1974). Linear amplification with nonlinear components. IEEE Transactions on Communications, 22(12), 1942–1945.CrossRefGoogle Scholar
  69. 69.
    Hakala, I., Choi, D. K., Gharavi, L., Kajakine, N., Koskela, J., & Kaunisto, R. (2005). A 2.14-GHz Chireix outphasing transmitter. IEEE Transactions on Microwave Theory and Techniques, 53(6), 2129–2138.CrossRefGoogle Scholar
  70. 70.
    Beltran, R., Raab, F. H., & Velazquez, A. (2009). HF outphasing transmitter using class-E power amplifiers. In 2009 IEEE MTT-S International Microwave Symposium Digest (pp. 757–760). Washington, DC: IEEE.CrossRefGoogle Scholar
  71. 71.
    Beltran, R., & Raab, F. (2015). Simplified analysis and design of outphasing transmitters using class-E power amplifiers. In 2015 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR) (pp. 1–3). Washington, DC: IEEE.Google Scholar
  72. 72.
    Raab, F. H. (1985). Efficiency of outphasing RF power-amplifier systems. IEEE Transactions on Communications, 33(10), 1094–1099.CrossRefGoogle Scholar
  73. 73.
    Bi, J. (2008). Chireix’s/LINC power amplifier for base station applications using GaN Devices with load compensation (MS thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:80c01881-4210-4979-8820-57ed80b8995c.
  74. 74.
    Qureshi, J. H., et al. (2009). A 90-W peak power GaN outphasing amplifier with optimum input signal conditioning. IEEE Transactions on Microwave Theory and Techniques, 57(8), 1925–1935.CrossRefGoogle Scholar
  75. 75.
    Barton, T. W., Dawson, J. L., & Perreault, D. J. (2013). Experimental validation of a four-way outphasing combiner for microwave power amplification. IEEE Microwave and Wireless Components Letters, 23(1), 28–30.CrossRefGoogle Scholar
  76. 76.
    de Falco, P. E., et al. (2017). Load modulation of harmonically tuned amplifiers and application to outphasing systems. IEEE Transactions on Microwave Theory and Techniques, 65(10), 3596–3612.CrossRefGoogle Scholar
  77. 77.
    Roblin, P., Chang, H.-C., Martinez-Rodriguez, F. J., Xie, C., & Martinez-Lopez, J. I. (2017). On the design of GaN Chireix power amplifiers using an embedding device model. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 30(1), e2148.CrossRefGoogle Scholar
  78. 78.
    Chang, H. C., Hahn, Y., Roblin, P., & Barton, T. W. (2018). new mixed-mode design methodology for high-efficiency outphasing Chireix amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(4), 1594–1607.  https://doi.org/10.1109/TCSI.2018.2882770.CrossRefGoogle Scholar
  79. 79.
    Özen, M., van der Heijden, M., Acar, M., Jos, R., & Fager, C. (2017). A generalized combiner synthesis technique for Class-E outphasing transmitters. IEEE Transactions on Microwave Theory and Techniques, 46(5), 1126–1139.Google Scholar
  80. 80.
    Özen, M., Andersson, K., & Fager, C. (2016). Symmetrical Doherty power amplifier with extended efficiency range. IEEE Transactions on Microwave Theory and Techniques, 64(4), 1273–1284.CrossRefGoogle Scholar
  81. 81.
    Zhang, R., et al. (2014). Generalized semi-analytical design methodology of class-E outphasing power amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2951–2960.CrossRefGoogle Scholar
  82. 82.
    Pozar, D. M. (2012). Microwave engineering (4th ed.). Hoboken, NJ: Wiley.Google Scholar
  83. 83.
    Özen, M., et al. (2014). Wideband and efficient watt-level SiGe BiCMOS switching mode power amplifier using continuous class-E modes theory. In 2014 IEEE Radio Frequency Integrated Circuits Symposium (pp. 1–4). Washington, DC: IEEE.Google Scholar
  84. 84.
    Kenington, P. B. (2000). High-linearity RF amplifier design. Boston, MA: Artech House.Google Scholar
  85. 85.
    Liu, T., Ye, Y., Zeng, X., & Ghannouchi, F. M. (2008). Accurate time-delay estimation and alignment for RF power amplifier/transmitter characterization. In 2008 4th IEEE International Conference on Circuits and Systems for Communications (pp. 70–74). Washington, DC: IEEE.CrossRefGoogle Scholar
  86. 86.
    Rawat, M., Quindroit, C., Roblin, P., Narharishetti, N., Pond, R., Salam, K., & Xie, C.. (2014). Characterization and modeling scheme for harmonics at power amplifier output. In 83rd ARFTG Microwave Measurement Symposium, Tampa, FL.Google Scholar
  87. 87.
    Boumaiza, S., Helaoui, M., Hammi, O., Liu, T., & Ghannouchi, F. M. (2007). Systematic and adaptive characterization approach for behavior modeling and correction of dynamic nonlinear transmitters. IEEE Transactions on Instrumentation and Measurement, 56(6), 2203–2210.CrossRefGoogle Scholar
  88. 88.
    Muhonen, K. J., Kavehrad, M., & Krishnamurthy, R. (2000). Look-up table techniques for adaptive digital predistortion: A development and comparison. IEEE Transactions on Vehicular Technology, 49(9), 1995–2002.CrossRefGoogle Scholar
  89. 89.
    Melendez-Cano, A., Juárez-Cázares, S. A., Galaviz-Aguilar, J. A., Cárdenas-Valdez, J. R., Garcia-Ortega, M. J., Calvillo-Téllez, A., Roblin, P., & Núñez-Pérez, J. C. (2016). Behavioral modeling for power amplifiers comparing MPM wiener and hammerstein with FPGA-based implementation. In 2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE) (pp. 119–124). Washington, DC: IEEE.CrossRefGoogle Scholar
  90. 90.
    Xu, G., Liu, T., Ye, Y., Xu, T., Wen, H., & Zhang, X. (2014). Generalized two-box cascaded nonlinear behavioral model for radio frequency power amplifiers with strong memory effects. IEEE Transactions on Microwave Theory and Techniques, 62(12), 2888–2899.CrossRefGoogle Scholar
  91. 91.
    Zhu, A., & Pedro, J. C. (2007). Amplifier distortion evaluation of RF power amplifiers using dynamic deviation reduction based volterra series. In 2007 IEEE/MTT-S International Microwave Symposium (pp. 965–968). Washington, DC: IEEE.CrossRefGoogle Scholar
  92. 92.
    Ding, L., Zhou, G. T., Morgan, D. R., Ma, Z., Kenney, J. S., Kim, J., & Giardina, C. R. (2006). A robust digital baseband predistorter constructed using memory polynomial. IEEE Transactions on Communications, 53(9), 1468–1479.Google Scholar
  93. 93.
    Barradas, F. M., Cunha, T. R., Lavrador, P. M., & Pedro, J. C. (2014). Polynomials and LUTs in PA behavioral modeling: A fair theoretical comparison. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3274–3285.CrossRefGoogle Scholar
  94. 94.
    Naraharisetti, N., Roblin, P., Quindroit, C., & Gheitanchi, S. (2015). Efficient least-squares 2-D-cubic spline for concurrent dual-band systems. IEEE Transactions on Microwave Theory and Techniques, 63(7), 2199–2210.CrossRefGoogle Scholar
  95. 95.
    Rawat, M., Rawat, K., & Ghannouchi, F. M. (2014). Generalized rational function for reduced complexity behavioural modelling and digital predistortion of broadband wireless transmitter. IEEE Transactions on Instrumentation and Measurement, 63(2), 485–498.CrossRefGoogle Scholar
  96. 96.
    Rawat, M., Rawat, K., & Ghannouchi, F. M. (2013). Three layered biased memory polynomial for dynamic modelling with predistortion of transmitter with memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(3), 768–777.MathSciNetCrossRefGoogle Scholar
  97. 97.
    Raich, R., Qian, H., & Zhou, G. T. (2004). Orthogonal polynomials for power amplifier modeling and predistorter design. IEEE Transactions on Vehicular Technology, 53(5), 1468–1479.CrossRefGoogle Scholar
  98. 98.
    Guan, L., & Zhu, A. (2010). Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(4), 866–872.CrossRefGoogle Scholar
  99. 99.
    Gilabert, P. L., Montoro, G., & Bertran, E. (2011). FPGA implementation of a real-time NARMA-based digital adaptive predistorter. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(7), 402–406.CrossRefGoogle Scholar
  100. 100.
    Guan, L., & Zhu, A. (2012). Optimized low-complexity implementation of least squares based model extraction for digital predistortion of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(3), 594–603.CrossRefGoogle Scholar
  101. 101.
    Mallet, C., et al. (2017). Analog predistortion for high power amplifier over the Ku-band (13, 75–14, 5 GHz). In 2017 47th European Microwave Conference (EuMC). Washington, DC: IEEE.Google Scholar
  102. 102.
    Jeong, H.-Y., Park, S.-K., Ryu, N.-S., Jeong, Y.-C., Yom, I.-B., & Kim, Y. (2005). A design of k-band predistortion linearizer using reflective schottky diode for satellite TWTAS. In 2005 European Microwave Conference. Washington, DC: IEEE.Google Scholar
  103. 103.
    Lee, Y.-S., Lee, M.-W., Kam, S.-H., & Jeong, Y.-H. (2010). A high linearity wideband power amplifier with cascaded third-order analog predistorters. IEEE Microwave and Wireless Components Letters, 20(2), 112–114.CrossRefGoogle Scholar
  104. 104.
    Ma, Y., Yamao, Y., Akaiwa, Y., & Ishibashi, K. (2014). Wideband digital predistortion using spectral extrapolation of band-limited feedback signal. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(7), 2088–2097.CrossRefGoogle Scholar
  105. 105.
    Ding, L., Zhou, G. T., Morgan, D. R., Zhengxiang, M., Kenney, J. S., Jaehyeong, K., & Giardina, C. R. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.CrossRefGoogle Scholar
  106. 106.
    Eun, C., & Powers, E. J. (1997). A new Volterra predistorter based on the indirect learning architecture. IEEE Transactions on Signal Processing, 45(1), 223–227.CrossRefGoogle Scholar
  107. 107.
    Jardin, P., & Baudoin, G. (2007). Filter look up table method for power amplifiers linearization. IEEE Transactions on Vehicular Technology, 56(3), 1076–1087.CrossRefGoogle Scholar
  108. 108.
    Praveen Jaraut, P., & Rawat, M. (2017). Application of principal component analysis based effective digital predistortion technique for low-cost FPGA implementation. Journal of RF and Microwave Computer‐Aided Engineering, 27(6), e21095.  https://doi.org/10.1002/mmce.21095.CrossRefGoogle Scholar
  109. 109.
    Jaraut, P., Rawat, M., & Roblin, P. (2019). Digital predistortion technique for low resource consumption using carrier aggregated 4G/5G signals. IET Microwaves, Antennas & Propagation, 13(2), 197–207.CrossRefGoogle Scholar
  110. 110.
    Rawat, K. (2012). Multi-band/multi-standard wireless transmitter for software defined radios (PhD thesis). University of Calgary.Google Scholar
  111. 111.
    Rawat, K., Rawat, M., & Ghannouchi, F. M. (2010). Compensating I–Q imperfections in hybrid RF/digital predistortion with an adapted lookup table implemented in an FPGA. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(5), 389–393.CrossRefGoogle Scholar
  112. 112.
    Gumber, K., & Rawat, M. (2017). A modified hybrid RF predistorter linearizer for ultra wideband 5G systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 7(4), 547–557.CrossRefGoogle Scholar
  113. 113.
    Black, H. S. (1928). Translating system. U.S. Patent No. 1,686,792.Google Scholar
  114. 114.
    Black, H. S. (1937). U.S. Patent No. 2, 102,671.Google Scholar
  115. 115.
    Seidel, H., Beurrier, H. R., & Friedman, A. N. (1968). Error controlled high power linear amplifiers at VHF. Bell System Technical Journal, 47, 651–722.CrossRefGoogle Scholar
  116. 116.
    Seidel, H. (1971). A feedforward experiment applied to an L-4 carrier system amplifier. IEEE Transactions on Communication Technology, 19(3), 320–325.CrossRefGoogle Scholar
  117. 117.
    Kenington, P. B. (1992). Efficiency of feedforward amplifiers. IEE Proceedings G (Circuits, Devices and Systems), 139(5), 591–593.CrossRefGoogle Scholar
  118. 118.
    Eid, E., Eid, F. M., & Ghannouchi, F. B. (1995). Optimal feedforward linearization system design. Microwave Journal, 78–84.Google Scholar
  119. 119.
    Schreier, R., & Temes, G. C. (2005). Understanding delta-sigma data converters (Vol. 74). Piscataway, NJ: IEEE Press.Google Scholar
  120. 120.
    Aziz, P. M., & Sorensen, H. V. (1996). An overview of sigma-delta converters. IEEE Signal Processing Magazine, 13(1), 61–84.CrossRefGoogle Scholar
  121. 121.
    Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2013). Delta-sigma-based transmitters: Advantages and disadvantages. IEEE Microwave Magazine, 14(1), 68–78.CrossRefGoogle Scholar
  122. 122.
    Nielsen, M., & Larsen, T. (2007). A transmitter architecture based on delta-sigma modulation and switch-mode power amplification. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(8), 735–739.CrossRefGoogle Scholar
  123. 123.
    Thiel, B. T., Ozmert, A., Guan, J., & Negra, R. (2011). Lowpass delta-sigma modulator with digital upconversion for switching-mode power amplifier. In 2011 IEEE MTT-S International Microwave Symposium (pp. 1–4). Washington, DC: IEEE.Google Scholar
  124. 124.
    Luzzatto, A., & Shirazi, G. (2007). Wireless transceiver design mastering the design of modern wireless equipment and systems (1st ed.). New York: Wiley.Google Scholar
  125. 125.
    Jerng, A., & Sodini, C. G. (2007). A wideband delta-sigma digital-rf modulator for high data rate transmitters. IEEE Journal of Solid-State Circuits, 42(8), 1710–1722.CrossRefGoogle Scholar
  126. 126.
    Anttila, L., Handel, P., & Valkama, M. (2010). Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct conversion transmitters. IEEE Transactions on Microwave Theory and Techniques, 58(4), 730–739.CrossRefGoogle Scholar
  127. 127.
    Yoon, S., & Park, S. (2009). All-digital transmitter architecture based on bandpass delta-sigma modulator. In 2009 9th International Symposium on Communications and Information Technology (pp. 703–706). Washington, DC: IEEE.CrossRefGoogle Scholar
  128. 128.
    Haykin, S. (1988). Digital communications. New York: Wiley.Google Scholar
  129. 129.
    Mak, P. I., Seng-Pan, U., Martins, R. P., & Mak, P. I. (2007). Transceiver architecture selection review, state-of-the-art survey and case study. IEEE Circuits and Systems Magazine, 7(2), 6–25.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Karun Rawat
    • 1
  • Patrick Roblin
    • 2
  • Shiban Kishen Koul
    • 3
  1. 1.Indian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.The Ohio State UniversityColumbusUSA
  3. 3.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations