Advertisement

The Biology of Immune-Active Cancers and Their Regulatory Mechanisms

  • Davide Bedognetti
  • Alessandra Cesano
  • Francesco M. Marincola
  • Ena WangEmail author
Chapter
  • 72 Downloads
Part of the Cancer Treatment and Research book series (CTAR, volume 180)

Abstract

The development of cancer results from the evolutionary balance between the proliferating aptitude of cancer cells and the response of the host’s tissues. Some cancers are characterized by genetic instability dependent upon impaired DNA repair mechanisms that lead to the chaotic disruption of multiple cellular functions often in excess of the cancer survival needs and may exert broad effects on surrounding tissues, some beneficial and some detrimental to cancer growth. Among them, inflammatory processes that accompany wound healing may initiate a reaction of the host against the neo-formation. This is possibly triggered by the release by dying cancer cells of molecules known as Damage-Associated Molecular Patterns (DAMPs) following a process termed Immunogenic Cell Death (ICD) that initiates an immune response through innate and adaptive mechanisms. Indeed, analysis of large cancer data sets has shown that ICD is strictly associated with the activation of other immune effector or immune-regulatory pathways. Here, we will describe how immune activation and compensatory immune-regulatory mechanisms balance anti-cancer immune surveillance and the roles that innate and adaptive immunity play including the weight that neo-epitopes may exert as initiators and sculptors of high-affinity memory and effector immune responses against cancer. We will discuss the evolutionary basis for the existence of immune checkpoints and how several theories raised to explain cancer resistance to immunotherapy represent a facet of a similar evolutionary phenomenon that we described in the Theory of Everything. We will show how the biology of immunogenicity and counterbalancing immune regulation is widespread across cancers independent of their ontogenesis while subtle idiosyncratic differences are discernible among them. Finally, we will suggest that overcoming immune resistance implies distinct approaches relevant to the immune context of individual cancers.

Abbreviations

ACT

Adoptive Cell Therapy

CIR

Cancer Immune Responsiveness

CIT

Checkpoint Inhibitor Therapy

DAMPs

Damage-Associated Molecular Patterns

DSP

Digital Spatial Profiling

HMGB1

High Mobility Group Box 1

ICD

Immunogenic Cell Death

ICR

Immunologic Constant of Rejection

IDO

Indoleamine 2,3-Dioxygenase

IFN

Interferon

IL

Interleukin

IO

Immune Oncology

NOS

Nitric Oxide Synthase

PDL1

Programmed Cell Death Protein Ligand 1

TCGA

The Cancer Genome Atlas

TGF

Transforming Growth Factor

TILs

Tumor-Infiltrating Lymphocytes

TIM-3/HAVCR2

T cell Immunoglobulin and Mucin-domain containing-3/Hepatitis A Virus Cellular Receptor 2

TIS

Tumor Inflammation Signature

TMB

Tumor Mutational Burden

TME

Tumor Micro-environment

TOC

Two Option Choice

TOE

Theory Of Everything

VEGF

Vascular Endothelial Growth Factor

VISTA

V-domain Immunoglobulin Suppressor of T cell Activation

References

  1. 1.
    Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371(9614):771–783CrossRefPubMedGoogle Scholar
  2. 2.
    Lu R, Turan T, Samayoa J, Marincola FM (2017) Cancer immune resistance: can theories converge? Emerg Top Life Sci 1(5):411–419CrossRefGoogle Scholar
  3. 3.
    Turan T, Kannan D, Patel M, Matthew Barnes J, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 6(1):50CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA 110(6):1999–2004CrossRefPubMedGoogle Scholar
  5. 5.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tysnes BB, Bjerkvig R (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta 1775(2):283–297PubMedGoogle Scholar
  7. 7.
    Yao Y, Dai W (2014) Genomic Instability and Cancer. J Carcinog Mutagen 5Google Scholar
  8. 8.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9(12):M57–M60CrossRefPubMedGoogle Scholar
  11. 11.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545CrossRefPubMedGoogle Scholar
  12. 12.
    Wang E, Worschech A, Marincola FM (2008) The immunologic constant of rejection. Trends Immunol 29(6):256–262CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fuchs EJ, Matzinger P (1996) Is cancer dangerous to the immune system? Semin Immunol 8(5):271–280CrossRefPubMedGoogle Scholar
  14. 14.
    Matzinger P (2002) An innate sense of danger. Ann N Y Acad Sci 961:341–342CrossRefPubMedGoogle Scholar
  15. 15.
    Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gajewski TF (2015) The next hurdle in cancer immunotherapy: overcoming the non-t-cell-inflamed tumor microenvironment. Semin Oncol 42(4):663–671CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Morgan NG, Richardson SJ (2018) Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. DiabetologiaGoogle Scholar
  18. 18.
    Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Galon J, Fox BA, Bifulco CB, Masucci G, Rau T, Botti G et al (2016) Immunoscore and Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015. J Transl Med 14:273CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Galon J, Fridman WH, Pages F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67(5):1883–1886CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hendrickx W, Simeone I, Anjum S, Mokrab Y, Bertucci F, Finetti P et al (2017) Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 6(2):e1253654CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Miller LD, Chou JA, Black MA, Print C, Chifman J, Alistar A et al (2016) Immunogenic subtypes of breast cancer delineated by gene classifiers of immune responsiveness. Cancer Immunol Res 4(7):600–610CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bertucci F, Finetti P, Simeone I, Hendrickx W, Wang E, Marincola FM et al (2018) The immunologic constant of rejection classification refines the prognostic value of conventional prognostic signatures in breast cancer. Br J Cancer 119(11):1383–1391CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH et al (2018) The immune landscape of cancer. Immunity 48(4):812–830.e14CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29(8):1093–1102CrossRefPubMedGoogle Scholar
  28. 28.
    Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G et al (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951CrossRefGoogle Scholar
  29. 29.
    Galon J, Lugli A, Bifulco C, Pages F, Masucci G, Marincola FM et al (2017) World-wide immunoscore task force: meeting report from the “Melanoma Bridge”, Napoli, November 30th–December 3rd, 2016. J Transl Med. 15(1):212CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA et al (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr et al (2011) Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 17(23):7440–7450CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bedognetti D, Spivey TL, Zhao Y, Uccellini L, Tomei S, Dudley ME et al (2013) CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 109(9):2412–2423CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang E, Miller LD, Ohnmacht GA, Mocellin S, Perez-Diez A, Petersen D et al (2002) Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 62(13):3581–3586PubMedPubMedCentralGoogle Scholar
  35. 35.
    Panelli MC, Stashower ME, Slade HB, Smith K, Norwood C, Abati A et al (2007) Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 8(1):R8Google Scholar
  36. 36.
    Worschech A, Chen N, Yu YA, Zhang Q, Pos Z, Weibel S et al (2009) Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genom 10:301CrossRefGoogle Scholar
  37. 37.
    Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA (2009) The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother 58(9):1355–1362CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Worschech A, Kmieciak M, Knutson KL, Bear HD, Szalay AA, Wang E et al (2008) Signatures associated with rejection or recurrence in HER-2/neu-positive mammary tumors. Cancer Res 68(7):2436–2446CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Turan T, Kannan D, Patel M, Barnes MJ, Tanlimco SG, Lu R et al (2017) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer (in press)Google Scholar
  40. 40.
    Spivey TL, Uccellini L, Ascierto ML, Zoppoli G, De Giorgi V, Delogu LG et al (2011) Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 9:174CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bedognetti D, Hendrickx W, Marincola FM, Miller LD (2015) Prognostic and predictive immune gene signatures in breast cancer. Curr Opin Oncol 27(6):433–444CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I et al (2018) Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer 6(1):63CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin InvestGoogle Scholar
  44. 44.
    Messerschmidt JL, Bhattacharya P, Messerschmidt GL (2017) Cancer clonal theory, immune escape, and their evolving roles in cancer multi-agent therapeutics. Curr Oncol Rep 19(10):66CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C et al (2018) Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 115(17):E4041–E4050CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maccalli C, Parmiani G, Ferrone S (2017) Immunomodulating and immunoresistance properties of cancer-initiating cells: implications for the clinical success of immunotherapy. Immunol Invest 46(3):221–238CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chockley PJ, Keshamouni VG (2016) Immunological consequences of epithelial-mesenchymal transition in tumor progression. J Immunol 197(3):691–698CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P et al (2014) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3(9):e955691CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jurikova M, Danihel L, Polak S, Varga I (2016) Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 118(5):544–552CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Costache MI, Ioana M, Iordache S, Ene D, Costache CA, Saftoiu A (2015) VEGF expression in pancreatic cancer and other malignancies: a review of the literature. Rom J Intern Med 53(3):199–208PubMedPubMedCentralGoogle Scholar
  51. 51.
    Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT et al (2016) Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med 8(360):360ra135Google Scholar
  52. 52.
    Liu Q, Tomei S, Ascierto ML, De Giorgi V, Bedognetti D, Dai C et al (2014) Melanoma NOS1 expression promotes dysfunctional IFN signaling. J Clin Invest 124(5):2147–2159CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Thomas DD, Wink DA (2017) NOS2 as an emergent player in progression of cancer. Antioxid Redox Signal 26(17):963–965CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mondanelli G, Ugel S, Grohmann U, Bronte V (2017) The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Curr Opin Pharmacol 35:30–39CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S et al (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection. J Mol Med (Berl). 92(12):1283–1292CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7(277):277ra30Google Scholar
  58. 58.
    Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C et al (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27(5):977–987.e4CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Salerno EP, Bedognetti D, Mauldin IS, Deacon DH, Shea SM, Pinczewski J et al (2016) Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncoimmunology 5(12):e1240857CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G (2009) Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res 15(14):4521–4528CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC et al (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175(7):1780–1795.e19Google Scholar
  62. 62.
    Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH et al (2016) Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537(7621):539–543CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C et al (2018) Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-gamma and IL-12. Immunity 49(6):1148–1161.e7Google Scholar
  64. 64.
    Mattox AK, Lee J, Westra WH, Pierce RH, Ghossein R, Faquin WC et al (2017) PD-1 expression in head and neck squamous cell carcinomas derives primarily from functionally anergic CD4(+) TILs in the presence of PD-L1(+) TAMs. Cancer Res 77(22):6365–6374CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Turan T, Kannan D, Patel M, Barnes JM, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer (in press)Google Scholar
  66. 66.
    Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS, Leitman SF et al (1994) Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 73(6):1731–1737Google Scholar
  67. 67.
    Lee KH, Panelli MC, Kim CJ, Riker AI, Bettinotti MP, Roden MM et al (1998) Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J Immunol 161(8):4183–4194Google Scholar
  68. 68.
    Lee KH, Wang E, Nielsen MB, Wunderlich J, Migueles S, Connors M et al (1999) Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 163(11):6292–6300PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ascierto PA, Agarwala S, Botti G, Cesano A, Ciliberto G, Davies MA et al (2016) Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”. Napoli, December 1st–4th 2015. J Transl Med 14(1):313Google Scholar
  70. 70.
    Amaria RN, Reddy SM, Tawbi HA, Davies MA, Ross MI, Glitza IC et al (2018) Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med 24(11):1649–1654CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P et al (2018) Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 24(11):1655–1661CrossRefGoogle Scholar
  72. 72.
    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Blankenstein T, Leisegang M, Uckert W, Schreiber H (2015) Targeting cancer-specific mutations by T cell receptor gene therapy. Curr Opin Immunol 33:112–119CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Thomas A, Routh ED, Pullikuth A, Jin G, Su J, Chou JW et al (2018) Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. Oncoimmunology 7(10):e1490854CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD et al (2017) Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis. PLoS Med. 14(5):e1002309CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X et al (2016) Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 4(11):959–967CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128Google Scholar
  83. 83.
    Saeterdal I, Bjorheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98(23):13255–13260CrossRefPubMedGoogle Scholar
  84. 84.
    Brainstorm C, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J et al (2018) Analysis of shared heritability in common disorders of the brain. Science. 360(6395)Google Scholar
  85. 85.
    Johanns TM, Ward JP, Miller CA, Wilson C, Kobayashi DK, Bender D et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4(12):1007–1015CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Moore TV, Lyons GE, Brasic N, Roszkowski JJ, Voelkl S, Mackensen A et al (2009) Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition. Cancer Immunol Immunother 58(5):719–728CrossRefPubMedGoogle Scholar
  87. 87.
    Voelkl S, Moore TV, Rehli M, Nishimura MI, Mackensen A, Fischer K (2009) Characterization of MHC class-I restricted TCRalphabeta+ CD4 CD8 double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother 58(5):709–718CrossRefPubMedGoogle Scholar
  88. 88.
    Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z et al (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24(6):724–730CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Deniger DC, Pasetto A, Robbins PF, Gartner JJ, Prickett TD, Paria BC et al (2018) T-cell responses to TP53 “Hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin Cancer Res 24(22):5562–5573CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Spranger S, Luke JJ, Bao R, Zha Y, Hernandez KM, Li Y et al (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci USA 113(48):E7759–E7768CrossRefPubMedGoogle Scholar
  91. 91.
    Janeway CA, Jr (2013) Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989, 54:1–13. J Immunol 2013, 191(9):4475–4487Google Scholar
  92. 92.
    Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13CrossRefPubMedGoogle Scholar
  93. 93.
    Janeway CA Jr, Medzhitov R (1998) Introduction: the role of innate immunity in the adaptive immune response. Semin Immunol 10(5):349–350CrossRefPubMedGoogle Scholar
  94. 94.
    Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298CrossRefPubMedGoogle Scholar
  95. 95.
    Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9CrossRefPubMedGoogle Scholar
  96. 96.
    Garg AD, Vandenberk L, Fang S, Fasche T, Van Eygen S, Maes J et al (2017) Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ 24(5):832–843CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Cui Z, Willingham MC, Hicks AM, Alexander-Miller MA, Howard TD, Hawkins GA et al (2003) Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci USA 100(11):6682–6687CrossRefPubMedGoogle Scholar
  98. 98.
    Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, Pettenati MJ et al (2006) Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA 103(20):7753–7758CrossRefPubMedGoogle Scholar
  99. 99.
    Hicks AM, Willingham MC, Du W, Pang CS, Old LJ, Cui Z (2006) Effector mechanisms of the anti-cancer immune responses of macrophages in SR/CR mice. Cancer Immun 6:11PubMedGoogle Scholar
  100. 100.
    Riedlinger G, Adams J, Stehle JR Jr, Blanks MJ, Sanders AM, Hicks AM et al (2010) The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction. BMC Cancer 10:179CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Fuchs EJ, Matzinger P (1992) B cells turn off virgin but not memory T cells. Science 258(5085):1156–1159CrossRefPubMedGoogle Scholar
  102. 102.
    Fuchs EJ, Ridge JP, Matzinger P (1996) Response: immunological tolerance. Science 272(5267):1406–1408CrossRefPubMedGoogle Scholar
  103. 103.
    Matzinger P (1998) An innate sense of danger. Semin Immunol 10(5):399–415CrossRefPubMedGoogle Scholar
  104. 104.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72CrossRefPubMedGoogle Scholar
  105. 105.
    Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2):97–111CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL et al (1994) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 91(9):3515–3519CrossRefPubMedGoogle Scholar
  108. 108.
    Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E et al (1994) Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91(14):6458–6462CrossRefPubMedGoogle Scholar
  109. 109.
    Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11(3):215–233CrossRefPubMedGoogle Scholar
  110. 110.
    Obeid M (2008) ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J Immunol 181(4):2533–2543CrossRefPubMedGoogle Scholar
  111. 111.
    Pozzi C, Cuomo A, Spadoni I, Magni E, Silvola A, Conte A et al (2016) The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 22(6):624–631CrossRefGoogle Scholar
  112. 112.
    Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM et al (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Spranger S, Gajewski TF (2015) A new paradigm for tumor immune escape: beta-catenin-driven immune exclusion. J Immunother Cancer 3:43CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Spranger S, Sivan A, Corrales L, Gajewski TF (2016) Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol 130:75–93CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Sweis RF, Spranger S, Bao R, Paner GP, Stadler WM, Steinberg G et al (2016) Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol Res 4(7):563–568CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C et al (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167(6):1540–1554.e12Google Scholar
  118. 118.
    Chihara N, Madi A, Kondo T, Zhang H, Acharya N, Singer M et al (2018) Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 558(7710):454–459CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12(10):671–684CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W et al (2016) Lineage relationship of CD8(+) T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 13(4):502–513CrossRefPubMedGoogle Scholar
  122. 122.
    Restifo NP, Gattinoni L (2013) Lineage relationship of effector and memory T cells. Curr Opin Immunol 25(5):556–563CrossRefPubMedGoogle Scholar
  123. 123.
    Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS et al (2019) Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci USA 116(5):1692–1697CrossRefPubMedGoogle Scholar
  124. 124.
    Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM et al (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 23(5):551–555CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Akalu YT, Rothlin CV, Ghosh S (2017) TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev 276(1):165–177CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Zhang B, Fang L, Wu HM, Ding PS, Xu K, Liu RY (2016) Mer receptor tyrosine kinase negatively regulates lipoteichoic acid-induced inflammatory response via PI3K/Akt and SOCS3. Mol Immunol 76:98–107CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Ho WS, Wang H, Maggio D, Kovach JS, Zhang Q, Song Q et al (2018) Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 9(1):2126CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B, Kaiser A et al (2018) Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132(8):804–814CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17(5):271–285CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Soldati L, Di Renzo L, Jirillo E, Ascierto PA, Marincola FM, De Lorenzo A (2018) The influence of diet on anti-cancer immune responsiveness. J Transl Med 16(1):75CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Liebman MN, Molinaro S (2012) Computational modeling and epidemiologic approaches: a new section of the Journal of Translational Medicine. J Transl Med 10:210CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Wang E, Uccellini L, Marincola FM (2012) A genetic inference on cancer immune responsiveness. Oncoimmunology 1(4):520–525CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L et al (2018) Evolution of metastases in space and time under immune selection. Cell 175(3):751–765.e16Google Scholar
  136. 136.
    Botticelli A, Cerbelli B, Lionetto L, Zizzari I, Salati M, Pisano A et al (2018) Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med 16(1):219CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Muller AJ, Manfredi MG, Zakharia Y, Prendergast GC (2019) Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin Immunopathol 41(1):41–48CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Song C, Piva M, Sun L, Hong A, Moriceau G, Kong X et al (2017) Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPKI-induced melanoma regression and early adaptation. Cancer Discov 7(11):1248–1265CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Turan T, Kannan D, Patel M, Barnes MJ, Tanlimco SG, Lu R et al (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer (in press)Google Scholar
  140. 140.
    Abd Al Samid M, Chaudhary B, Khaled YS, Ammori BJ, Elkord E (2016) Combining FoxP3 and Helios with GARP/LAP markers can identify expanded Treg subsets in cancer patients. Oncotarget 7(12):14083–14094Google Scholar
  141. 141.
    Alinejad V, Dolati S, Motallebnezhad M, Yousefi M (2017) The role of IL17B-IL17RB signaling pathway in breast cancer. Biomed Pharmacother = Biomed & pharmacother 88:795–803Google Scholar
  142. 142.
    Moon PK, Tran S, Minhas PS (2019) Revisiting IDO and its value as a predictive marker for anti-PD-1 resistance. J Transl Med 17(1):31CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Crittenden MR, Baird J, Friedman D, Savage T, Uhde L, Alice A et al (2016) Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy. Oncotarget 7(48):78653–78666CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Davide Bedognetti
    • 1
  • Alessandra Cesano
    • 2
  • Francesco M. Marincola
    • 3
  • Ena Wang
    • 4
    Email author
  1. 1.Sidra ResearchDohaQatar
  2. 2.Essa PharmaSouth San FranciscoUSA
  3. 3.Refuge BiotechnologiesMenlo ParkUSA
  4. 4.AllogeneSouth San FranciscoUSA

Personalised recommendations