Partial Differential Equation Models

  • Haiyan Wang
  • Feng Wang
  • Kuai Xu
Part of the Surveys and Tutorials in the Applied Mathematical Sciences book series (STAMS, volume 7)


In this chapter we present a number of partial differential equation models for information diffusion in online social networks with friendship hops as distance metrics. First, we discuss embedding of graphs of online social networks into Euclidean spaces. We develop a conceptual framework that divides the information diffusion process over online social networks into two separate processes: external and internal influences. We establish a general framework for partial differential equation models and discuss three diffusive logistic models and then validate them with the Digg and Twitter datasets.


  1. 13.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003). CrossRefGoogle Scholar
  2. 19.
    Cha, M., Mislove, A., Gummadi, K.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th International Conference on World Wide Web, pp. 721–730. ACM, New York (2009)Google Scholar
  3. 33.
    Gerald, C.F., Wheatley, P.O.: Applied Numerical Analysis. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  4. 38.
    Guille, A., Hacid, H., Favre, C., Zighed, D.: Information diffusion in online social networks: a survey. SIGMOD Rec. 42, 17–28 (2013)CrossRefGoogle Scholar
  5. 46.
  6. 63.
    Kwon, K., Wang, H., Xu, W., Raymond, R.: A spatiotemporal model of Twitter information diffusion: an example of Egyptian revolution 2011. In: Proceedings of Social Media and Society, ACM International Conference Proceeding Series (ICPS), July 27–29, Toronto (2015)Google Scholar
  7. 64.
    Kwon, K., Xu, W., Wang, H., Chon, J.: Spatiotemporal diffusion modeling of global mobilization in social media: the case of Egypt revolution 2011. Int. J. Commun. 10, 73–97 (2016)Google Scholar
  8. 82.
    Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (1989)CrossRefGoogle Scholar
  9. 84.
    Myers, S., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 33–41. ACM, New York (2012)Google Scholar
  10. 106.
    Romero, D., Tan, C., Ugander, J.: On the interplay between social and topical structure. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media (ICWSM) (2013)Google Scholar
  11. 123.
    Tufekci, Z.: Big data: pitfalls, methods and concepts for an emergent field (2013). Google Scholar
  12. 128.
    Wang, F., Wang, H., Xu, K.: Diffusive logistic model towards predicting information diffusion in online social networks. In: 2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 133–139. IEEE, Piscataway (2012).
  13. 130.
    Wang, F., Wang, H., Xu, K., Wu, J., Xia, J.: Characterizing information diffusion in online social networks with linear diffusive model. In: 2013 33nd International Conference on Distributed Computing Systems (ICDCS), pp. 307–316. IEEE, Piscataway (2013).
  14. 147.
    Zhu, L., Zhao, H., Wang, H.: Bifurcation and control of a delayed diffusive logistic model in online social networks. In: Proceedings of the 33rd Chinese Control Conference, Nanjing (2014)Google Scholar
  15. 148.
    Zhu, L., Zhao, H., Wang, H.: Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms. Inf. Sci. 349–350, 119–138 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Haiyan Wang
    • 1
  • Feng Wang
    • 1
  • Kuai Xu
    • 1
  1. 1.School of Mathematical & Natural SciencesArizona State UniversityPhoenixUSA

Personalised recommendations