UltraComm: High-Speed and Inaudible Acoustic Communication

  • Guoming Zhang
  • Xiaoyu Ji
  • Xinyan Zhou
  • Donglian Qi
  • Wenyuan XuEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 300)


Acoustic communication has become a research focus without requiring extra hardware on the receiver side and facilitates numerous near-field applications such as mobile payment, data sharing. To communicate, existing researches either use audible frequency band or inaudible one. The former gains a high throughput but endures being audible, which can be annoying to users. The latter, although inaudible, falls short in throughput due to the limited available (near) ultrasonic bandwidth (18–22 kHz). In this paper, we achieve both high speed and inaudibility for acoustic communication by modulating the coded acoustic signal (0–20 kHz) on ultrasonic carrier. By utilizing the nonlinearity effect on microphone, the modulated audible acoustic signal can be demodulated and then decoded. We design and implement UltraComm, an inaudible acoustic communication system with OFDM scheme based on the characteristics of the nonlinear speaker-to-microphone channel. We evaluate UltraComm on different mobile devices and achieve throughput as high as 16.24 kbps, meanwhile, keep inaudibility.


Ultrasound Inaudible acoustic communication Nonlinearity Device-to-device communication 


  1. 1.
    Dog Park Software Ltd.: iSpectrum - Macintosh Audio Spectrum Analyze. Accessed May 2017Google Scholar
  2. 2.
  3. 3.
    Novak, E., Tang, Z., Li, Q.: Ultrasound proximity networking on smart mobile devices for IoT applications. IEEE Internet Things J. 6(1), 399–409 (2018) CrossRefGoogle Scholar
  4. 4.
    Tseng, W.-K.: A directional audible sound system using ultrasonic transducers. Int. J. Adv. Res. Artif. Intell. 4(9) (2015)Google Scholar
  5. 5.
    Yan, C., Zhang, G., Ji, X., et al.: The feasibility of injecting inaudible voice commands to voice assistants. IEEE Trans. Dependable Secure Comput. (2019)Google Scholar
  6. 6.
    Nonlinear Acoustics. Academic Press, San Diego (1998)Google Scholar
  7. 7.
    Zhang, G., Yan, C., Ji, X., et al.: DolphinAttack: inaudible voice commands. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 103–117. ACM (2017)Google Scholar
  8. 8.
    N5172B EXG X-Series RF Vector Signal Generator, 9 kHz to 6 GHz. Accessed May 2017
  9. 9.
    Ultrasonic Dynamic Speaker Vifa. Accessed 5 May 2017
  10. 10.
    Lazik, P., Rowe, A.: Indoor pseudo-ranging of mobile devices using ultrasonic chirps. In: Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, pp. 99–112. ACM (2012)Google Scholar
  11. 11.
    Cobham: Intermodulation Distortion. Accessed 3 Oct 2018
  12. 12.
    Liang, C.P., Jong, J., Stark, W.E., et al.: Nonlinear amplifier effects in communications systems. IEEE Trans. Microw. Theory Tech. 47(8), 1461–1466 (1999) CrossRefGoogle Scholar
  13. 13.
    Ohno, S., Manasseh, E., Nakamoto, M.: Preamble and pilot symbol design for channel estimation in OFDM systems with null subcarriers. EURASIP J. Wirel. Commun. Netw. 2011(1), 2 (2011) CrossRefGoogle Scholar
  14. 14.
    Nandakumar, R., Chintalapudi, K.K., Padmanabhan, V., et al.: Dhwani: secure peer-to-peer acoustic NFC. In: ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 63–74. ACM (2013)Google Scholar
  15. 15.
    Jinci Technologies: Open structure product review. Accessed 5 May 2017
  16. 16.
    Zhang, B., Zhan, Q., Chen, S., et al.: PriWhisper: enabling keyless secure acoustic communication for smartphones. IEEE Internet Things J. 1(1), 33–45 (2014) CrossRefGoogle Scholar
  17. 17.
    Wang, Q., Ren, K., Zhou, M., et al.: Messages behind the sound: real-time hidden acoustic signal capture with smartphones. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 29–41. ACM (2016)Google Scholar
  18. 18.
    Gerasimov, V., Bender, W.: Things that talk: using sound for device-to-device and device-to-human communication. IBM Syst. J. 39(3.4), 530–546 (2000) CrossRefGoogle Scholar
  19. 19.
    Hanspach, M., Goetz, M.: On covert acoustical mesh networks in air. arXiv preprint arXiv:1406.1213 (2014)
  20. 20.
    Wambacq, P., Sansen, W.M.C.: Distortion Analysis of Analog Integrated Circuits. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Chen, G.K.C., Whalen, J.J.: Macromodel predictions for EMI in bipolar operational amplifiers. IEEE Trans. Electromagn. Compat. 4, 262–265 (1980)CrossRefGoogle Scholar
  22. 22.
    Fiori, F., Crovetti, P.S.: Nonlinear effects of radio-frequency interference in operational amplifiers. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 367–372 (2002)CrossRefGoogle Scholar
  23. 23.
    Fiori, F.: A new nonlinear model of EMI-induced distortion phenomena in feedback CMOS operational amplifiers. IEEE Trans. Electromagn. Compat. 44(4), 495–502 (2002)CrossRefGoogle Scholar
  24. 24.
    Graffi, S., Masetti, G., Golzio, D.: New macromodels and measurements for the analysis of EMI effects in 741 op-amp circuits. IEEE Trans. Electromagn. Compat. 33(1), 25–34 (1991)CrossRefGoogle Scholar
  25. 25.
    Matsuoka, H., Nakashima, Y., Yoshimura, T.: Acoustic communication system using mobile terminal microphones. NTT DoCoMo Tech. J 8(2), 2–12 (2006)Google Scholar
  26. 26.
    Kune, D.F., Backes, J., Clark, S.S., et al.: Ghost talk: mitigating EMI signal injection attacks against analog sensors. In: 2013 IEEE Symposium on Security and Privacy, pp. 145–159. IEEE (2013)Google Scholar
  27. 27.
    Roy, N., Hassanieh, H., Roy Choudhury, R.: Backdoor: making microphones hear inaudible sounds. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, pp. 2–14. ACM (2017)Google Scholar
  28. 28.
    Hosman, T., Yeary, M., Antonio, J.K., et al.: Multi-tone FSK for ultrasonic communication. In: 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings, pp. 1424–1429. IEEE (2010)Google Scholar
  29. 29.
    Yun, H.S., Cho, K., Kim, N.S.: Acoustic data transmission based on modulated complex lapped transform. IEEE Signal Processing Lett. 17(1), 67–70 (2009)Google Scholar
  30. 30.
    Lopes, C.V., Aguiar, P.M.Q.: Aerial acoustic communications. In: Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575), pp. 219–222. IEEE (2001)Google Scholar
  31. 31.
    Ka, S., Kim, T.H., Ha, J.Y., et al.: Near-ultrasound communication for TV’s 2nd screen services. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 42–54. ACM (2016)Google Scholar
  32. 32.
    Peng, C., Shen, G., Zhang, Y., et al.: BeepBeep: a high accuracy acoustic ranging system using cots mobile devices. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, pp. 1–14. ACM (2007)Google Scholar
  33. 33.
    Lee, H., Kim, T.H., Choi, J.W., et al.: Chirp signal-based aerial acoustic communication for smart devices. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 2407–2415. IEEE (2015)Google Scholar
  34. 34.
    Santagati, G.E., Melodia, T.: A software-defined ultrasonic networking framework for wearable devices. IEEE/ACM Trans. Netw. (TON) 25(2), 960–973 (2017)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  • Guoming Zhang
    • 1
  • Xiaoyu Ji
    • 1
  • Xinyan Zhou
    • 1
  • Donglian Qi
    • 1
  • Wenyuan Xu
    • 1
    Email author
  1. 1.Zhejiang UniversityHang ZhouChina

Personalised recommendations