The Trace Modality

  • Dominic SteinhöfelEmail author
  • Reiner Hähnle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12005)


We propose the trace modality, a concept to uniformly express a wide range of program verification problems. To demonstrate its usefulness, we formalize several program verification problems in it: Functional Verification, Information Flow Analysis, Temporal Model Checking, Program Synthesis, Correct Compilation, and Program Evolution. To reason about the trace modality, we translate programs and specifications to regular symbolic traces and construct simulation relations on first-order symbolic automata. The idea with this uniform representation is that it helps to identify synergy potential—theoretically and practically—between so far separate verification approaches.


  1. 1.
    Ahrendt, W., Beckert, B., et al. (eds.): Deductive Software Verification - The KeY Book. LNCS, vol. 10001. Springer, Cham (2016). Scholar
  2. 2.
    Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006). Scholar
  3. 3.
    Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer, Heidelberg (2011). Scholar
  4. 4.
    Barthe, G., D’Argenio, P.R., et al.: Secure information flow by self-composition. In: Proceedings of CSFW-17, pp. 100–114. IEEE Computer Society (2004)Google Scholar
  5. 5.
    Beckert, B., Bruns, D.: Dynamic logic with trace semantics. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 315–329. Springer, Heidelberg (2013). Scholar
  6. 6.
    Bobot, F., Filliâtre, J.C., et al.: Why3: shepherd your herd of provers. In: Boogie 2011: First International Workshop on IVL, pp. 53–64 (2011)Google Scholar
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: 4th Symposium of POPL, pp. 238–252. ACM Press, January 1977Google Scholar
  8. 8.
    Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450, pp. 193–209. Springer, Heidelberg (2005). Scholar
  9. 9.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of 23rd IJCAI, pp. 854–860 (2013)Google Scholar
  10. 10.
    Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simulation preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 255–265. Springer, Heidelberg (1992). Scholar
  11. 11.
    Din, C.C., Hähnle, R., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: Locally abstract, globally concrete semantics of concurrent programming languages. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 22–43. Springer, Cham (2017). Scholar
  12. 12.
    Garrido, A., Meseguer, J.: Formal specification and verification of Java refactorings. In: Proceedings of 6th SCAM, pp. 165–174. IEEE Computer Society (2006)Google Scholar
  13. 13.
    Godlin, B., Strichman, O.: Regression verification: proving the equivalence of similar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013)CrossRefGoogle Scholar
  14. 14.
    Hähnle, R., Heisel, M., Reif, W., Stephan, W.: An interactive verification system based on dynamic logic. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 306–315. Springer, Heidelberg (1986). Scholar
  15. 15.
    Harel, D., Tiuryn, J., et al.: Dynamic Logic. MIT Press, Cambridge (2000)CrossRefGoogle Scholar
  16. 16.
    Heisel, M.: Formalizing and implementing Gries’ program development method in dynamic logic. Sci. Comput. Program. 18(1), 107–137 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)CrossRefGoogle Scholar
  18. 18.
    Holzmann, G.J.: The model checker SPIN. IEEE Trans. SE 23(5), 279–295 (1997)CrossRefGoogle Scholar
  19. 19.
    Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4), 21:1–21:54 (2009)CrossRefGoogle Scholar
  20. 20.
    Kamburjan, E.: Behavioral program logic. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 391–408. Springer, Cham (2019). Scholar
  21. 21.
    Leroy, X.: Formal verification of a realistic compiler. Comm. ACM 52(7), 107–115 (2009)CrossRefGoogle Scholar
  22. 22.
    Monperrus, M.: Automatic software repair: a bibliography. ACM Comput. Surv. 51(1), 17:1–17:24 (2018)CrossRefGoogle Scholar
  23. 23.
    Păsăreanu, C.S., Visser, W.: Verification of Java programs using symbolic execution and invariant generation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 164–181. Springer, Heidelberg (2004). Scholar
  24. 24.
    Rauch Henzinger, M., Henzinger, T.A., et al.: Computing simulations on finite and infinite graphs. In: Proceedings of 36th Symposium on FoCS, pp. 453–462. IEEE (1995)Google Scholar
  25. 25.
    Reps, T.W., Horwitz, S., et al.: Precise interprocedural dataflow analysis via graph reachability. In: Proceedings of 22nd POPL, pp. 49–61 (1995)Google Scholar
  26. 26.
    Shankar, N.: Combining model checking and deduction. Handbook of Model Checking, pp. 651–684. Springer, Cham (2018). Scholar
  27. 27.
    Srivastava, S., Gulwani, S., et al.: From program verification to program synthesis. In: Proceedings of 37th POPL, pp. 313–326 (2010)Google Scholar
  28. 28.
    Steinhöfel, D., Hähnle, R.: Modular, correct compilation with automatic soundness proofs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 424–447. Springer, Cham (2018). Scholar
  29. 29.
    Visser, W., Havelund, K., et al.: Model checking programs. Autom. Softw. Eng. 10(2), 203–232 (2003)CrossRefGoogle Scholar
  30. 30.
    Yang, H.: Relational separation logic. Theoret. CS 375(1–3), 308–334 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DarmstadtDarmstadtGermany

Personalised recommendations