Advertisement

Bringing Belief Base Change into Dynamic Epistemic Logic

  • Marlo SouzaEmail author
  • Álvaro Moreira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12005)

Abstract

AGM’s belief revision is one of the main paradigms in the study of belief change operations. In this context, belief bases (prioritised bases) have been primarily used to specify the agent’s belief state. While the connection of iterated AGM-like operations and their encoding in dynamic epistemic logics have been studied before, few works considered how well-known postulates from iterated belief revision theory can be characterised by means of belief bases and their counterpart in dynamic epistemic logic. Particularly, it has been shown that some postulates can be characterised through transformations in priority graphs, while others may not be represented that way. This work investigates changes in the semantics of Dynamic Preference Logic that give rise to an appropriate syntactic representation for its models that allow us to represent and reason about iterated belief base change in this logic.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andersen, M.B., Bolander, T., van Ditmarsch, H., Jensen, M.H.: Bisimulation and expressivity for conditional belief, degrees of belief, and safe belief. Synthese 194(7), 2447–2487 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining preference relations. J. Log. Comput. 12(1), 13–53 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Log. J. IGPL 23(4), 601–627 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. Texts Log. Games 3, 9–58 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Boutilier, C.: Revision sequences and nested conditionals. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, vol. 93, pp. 519–531. Morgan Kaufmann, New York (1993)Google Scholar
  7. 7.
    Casini, G., Fermé, E., Meyer, T., Varzinczak, I.: A semantic perspective on belief change in a preferential non-monotonic framework. In: Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (2018)Google Scholar
  8. 8.
    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1), 1–29 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fermé, E., Garapa, M., Reis, M.D.L.: On ensconcement and contraction. J. Log. Comput. 27(7), 2011–2042 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fermé, E., Krevneris, M., Reis, M.: An axiomatic characterization of ensconcement-based contraction. J. Symb. Log. 18(5), 739–753 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Freund, M., Lehmann, D.: Belief revision and rational inference. Technical report 94–16, Leibniz Center for Research in Computer Science, Institute of Computer Science, Hebrew University of Jerusalem (1994)Google Scholar
  12. 12.
    Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic entrenchment. In: Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning About Knowledge, pp. 83–95. Morgan Kaufmann Publishers Inc. (1988)Google Scholar
  13. 13.
    Georgatos, K.: To preference via entrenchment. Ann. Pure Appl. Log. 96(1–3), 141–155 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Girard, P.: Modal logic for belief and preference change. Ph.D. thesis, Stanford University (2008)Google Scholar
  15. 15.
    Girard, P., Rott, H.: Belief revision and dynamic logic. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 203–233. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06025-5_8CrossRefzbMATHGoogle Scholar
  16. 16.
    Grove, A.: Two modelings for theory change. J. Philos. Log. 17(2), 157–170 (1988)CrossRefGoogle Scholar
  17. 17.
    Hansson, S.O.: In defense of base contraction. Synthese 91(3), 239–245 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hansson, S.O.: Kernel contraction. J. Symb. Log. 59(3), 845–859 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jin, Y., Thielscher, M.: Iterated belief revision, revised. Arti. Intell. 171(1), 1–18 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Levesque, H.J.: A logic of implicit and explicit belief. In: Proceedings of the Fourth National Conference on Artificial Intelligence, pp. 198–202. AAAI Press, Palo Alto, US (1984)Google Scholar
  21. 21.
    Lewis, D.: Counterfactuals. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  22. 22.
    Lindström, S., Rabinowicz, W.: DDL unlimited: dynamic doxastic logic for introspective agents. Erkenntnis 50(2), 353–385 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, F.: Reasoning About Preference Dynamics, vol. 354. Springer, New York (2011).  https://doi.org/10.1007/978-94-007-1344-4CrossRefzbMATHGoogle Scholar
  24. 24.
    Lorini, E.: In praise of belief bases: doing epistemic logic without possible worlds. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)Google Scholar
  25. 25.
    Nayak, A.C., Pagnucco, M., Peppas, P.: Dynamic belief revision operators. Artif. Intell. 146(2), 193–228 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ramachandran, R., Nayak, A.C., Orgun, M.A.: Three approaches to iterated belief contraction. J. Philos. Log. 41(1), 115–142 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Reis, M.D.L.: On the interrelation between systems of spheres and epistemic entrenchment relations. Log. J. IGPL 22(1), 126–146 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rott, H.: ‘Just Because’: taking belief bases seriously. In: Buss, S.R., Hájek, P., Pudlák, P. (eds.) Lecture Notes in Logic, vol. 13, pp. 387–408. Association for Symbolic Logic, Urbana, US (1998)Google Scholar
  29. 29.
    Souza, M., Moreira, Á., Vieira, R.: Dynamic preference logic as a logic of belief change. In: Madeira, A., Benevides, M. (eds.) DALI 2017. LNCS, vol. 10669, pp. 185–200. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73579-5_12CrossRefzbMATHGoogle Scholar
  30. 30.
    Souza, M., Moreira, A., Vieira, R.: Iterated belief base change: a dynamic epistemic logic approach. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. AAAI Press, Palo Alto, US (2019, to appear)Google Scholar
  31. 31.
    Souza, M., Moreira, A., Vieira, R., Meyer, J.J.C.: Preference and priorities: a study based on contraction. In: KR 2016, pp. 155–164. AAAI Press (2016)Google Scholar
  32. 32.
    Van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Class. Log. 17(2), 129–155 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Van Benthem, J., Grossi, D., Liu, F.: Priority structures in deontic logic. Theoria 80(2), 116–152 (2014)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Goals in conflict: semantic foundations of goals in agent programming. Auton. Agent. Multi-Agent Syst. 18(3), 471–500 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Mathematics and StatisticsFederal University of Bahia - UFBASalvadorBrazil
  2. 2.Institute of InformaticsFederal University of Rio Grande do Sul - UFRGSPorto AlegreBrazil

Personalised recommendations