Advertisement

Reconfigurable Clock Networks, Automated Design Flows, Run-Time Optimization, and Case Study

  • Saurabh Jain
  • Longyang Lin
  • Massimo Alioto
Chapter
  • 35 Downloads

Abstract

This chapter introduces clock network reconfiguration for wide adaptation from nominal voltage down to deep sub-threshold voltages. Reconfiguration resolves the conflicting repeater insertion requirements at different voltages, in conventional static clock networks. In reconfigurable clock networks, the number of repeater levels is dynamically adapted to the supply voltage to ultimately mitigate the clock skew degradation across a wide voltage range. At nominal voltage, the number of repeater levels is adjusted to the highest value to mitigate the important clock skew contribution of wire delays. At lower voltages, the number of repeaters is progressively lowered to mitigate the increasingly dominant clock skew contribution of repeaters.

Keywords

Reconfigurable clock network Wire delay Gate delay Bypassable repeater Clock repeater Clock tree Hold margin Robustness against hold violations Timing violations Minimum operating voltage Vmin Clock skew Launching register Capturing register Shallow clock network Deep clock network Monte Carlo simulations Clock skew standard deviation Histogram DIBL effect Clock distribution Clock signal Boostable clock repeater Clock root Clock sink Clock tree leaves Clock gater Dummy clock gater Bypassable clock gater Clock tree synthesis Automated clock tree design Level balance principle DVFS Fast Fourier Transform (FFT) Clock path replica Clock skew measurement Time-to-digital conversion Vernier delay line Above-threshold region Near-threshold region Sub-threshold region 

References

  1. 1.
    L. Lin, S. Jain, M. Alioto, Reconfigurable clock networks for random skew mitigation from subthreshold to nominal voltage, in IEEE ISSCC Digest of Technical Papers, San Francisco (CA), (2017), pp. 440–441Google Scholar
  2. 2.
    L. Lin, S. Jain, M. Alioto, Reconfigurable clock networks for wide voltage scaling. IEEE J. Solid State Circuits 54(9), 2622–2631 (2019)CrossRefGoogle Scholar
  3. 3.
    M. Alioto (ed.), Enabling the Internet of Things—From Integrated Circuits to Integrated Systems (Springer, Berlin, 2017)Google Scholar
  4. 4.
    T. Xanthopoulos (Ed.), Clocking in Modern VLSI Systems, 2009.Google Scholar
  5. 5.
    M. Alioto, E. Consoli, G. Palumbo, Flip-Flop Design in Nanometer CMOS—From High Speed to Low Energy (Springer, Berlin, 2015)Google Scholar
  6. 6.
    T. Burd, T. Pering, A. Stratakos, R. Brodersen, A dynamic voltage scaled microprocessor system, in IEEE ISSCC Digest of Technical Papers, (2000)Google Scholar
  7. 7.
    S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthukumar, M. Srinivasan, A. Kumar, S. Kumar, R. Ramanarayanan, V. Erraguntla, J. Howard, S. Vangal, S. Dighe, G. Ruhl, P. Aseron, H. Wilson, N. Borkar, V. De, S. Borkar, A 280 mV-to-1.2 V wide-Operating-range IA-32 processor in 32 nm CMOS, in IEEE ISSCC Digest of Technical Papers, San Francisco (CA), (2012)Google Scholar
  8. 8.
    W. Wang, P. Mishra, System-wide leakage-aware energy minimization using dynamic voltage scaling and cache reconfiguration in multitasking systems. IEEE Trans. VLSI Syst. 20(5) (2012)Google Scholar
  9. 9.
    A.P. Chandrakasan, D.C. Daly, D.F. Finchelstein, J. Kwong, Y.K. Ramadass, M.E. Sinangil, V. Sze, N. Verma, Technologies for ultradynamic voltage scaling. Proc. IEEE 98(2), 191–214 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Seok, D. Jeon, C. Chakrabati, D. Blaauw, D. Sylvester, Extending energy-saving voltage scaling in ultra low voltage integrated circuit designs, in Proceedings of ICICDT, Austin (TX), (2012)Google Scholar
  11. 11.
    D. Jacquet, F. Hasbani, P. Flatresse, R. Wilson, F. Arnaud, G. Cesana, T.D. Gilio, C. Lecocq, T. Roy, A. Chhabra, C. Grover, O. Minez, J. Uginet, G. Durieu, C. Adobati, D. Casalotto, F. Nyer, P. Menut, A. Cathelin, I. Vongsavady, P. Magarshack, A 3 GHz dual core processor ARM Cortex TM-A9 in 28 nm UTBB FD-SOI CMOS with ultra-wide voltage range and energy efficiency optimization. IEEE J. Solid State Circuits 49(4), 812–826 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Abouzeid, S. Clerc, B. Pelloux-Prayer, F. Argoud, P. Roche, 28 nm CMOS, energy efficient and variability tolerant, 350 mV-to-1.0 V, 10 MHz/700 MHz, 252 bits Frame Error-Decoder, in Proceedings of ESSCIRC, (2012), pp. 153–156Google Scholar
  13. 13.
    S. Hsu, A. Agarwal, M. Anders, S. Mathew, H. Kaul, F. Sheikh, R. Krishnamurthy, A 280 mV-to-1.1V 256b reconfigurable SIMD vector permutation engine with 2-dimensional shuffle in 22 nm CMOS, in IEEE ISSCC Digest of Technical Papers, San Francisco (CA), (2012)Google Scholar
  14. 14.
    M. Seok, D. Blaauw, D. Sylvester, Robust clock network design methodology for ultra-low voltage operations. IEEE J. Emerg. Select. Topics Circuits Syst. 1(2), 120–130 (2011)CrossRefGoogle Scholar
  15. 15.
    J.R. Tolbert, X. Zhao, S.K. Lim, S. Mukhopadhyay, Analysis and design of energy and slew aware subthreshold clock systems. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 30(9), 1349–1358 (2011)CrossRefGoogle Scholar
  16. 16.
    X. Zhao, J.R. Tolbert, S. Mukhopadhyay, S.K. Lim, Variation-aware clock network design methodology for ultralow voltage (ULV) Circuits. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 31(8), 1222–1234 (2012)CrossRefGoogle Scholar
  17. 17.
    C. Sitik, W. Liu, B. Taskin, E. Salman, Design methodology for voltage-scaled clock distribution networks. IEEE Trans. VLSI Syst. 24(10), 3080–3093 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Kim, M. Seok, Reconfigurable regenerator-based interconnect design for ultra-dynamic-voltage-scaling systems, in Proceedings of ISLPED 2014, La Jolla (CA), (2014), pp. 99–104Google Scholar
  19. 19.
    J. Wang, N. Pinckney, D. Blaauw, D. Sylvester, Reconfigurable self-timed regenerators for wide-range voltage scaled interconnect, in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC), Xiamen (China), (2015), pp. 1–4Google Scholar
  20. 20.
    M. Alioto, G. Scotti, A. Trifiletti, A novel framework to estimate the path delay variability on the back of an envelope via the Fan-Out-of-4 Metric. IEEE Trans. CAS Pt. I 64(8), 2073–2085 (2017)Google Scholar
  21. 21.
    C. Augustine, C. Tokunaga, A. Malavasi, A. Raychowdhury, M. Khellah, J. Tschanz, V. De, Characterization of PVT variation & aging induced hold time margins of flip-flop arrays at NTV in 22nm tri-gate CMOS, in Proceedings of IEDM, (2016), pp. 894–897Google Scholar
  22. 22.
    S. Jain, L. Lin, M. Alioto, Dynamically adaptable pipeline for energy-efficient microarchitectures under wide voltage scaling. IEEE J. Solid State Circuits 53(2), 632–641 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Jeon, M. Seok, C. Chakrabarti, D. Blaauw, D. Sylvester, A super-pipelined energy efficient subthreshold 240 MS/s FFT core in 65 nm CMOS. IEEE J. Solid State Circuits 47(1) (2012)CrossRefGoogle Scholar
  24. 24.
    S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K.K. Das, W. Haensch, E.J. Nowak, D.M. Sylvester, Ultralow-voltage, minimum-energy CMOS. IBM J. Res. Dev. 50(4/5) (2006)CrossRefGoogle Scholar
  25. 25.
    D. Bol, J.D. Vos, C. Hocquet, F. Botman, F. Durvaus, S. Boyd, D. Flandre, J. Legat, SleepWalker: A 25-MHz 0.4-V Sub-mm2 7uW/MHz Microcontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. IEEE J. Solid State Circuits 48(1), 20–32 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Myers, A. Savanth, R. Gaddh, D. Howard, P. Prabhat, D. Flynn, A subthreshold ARM Cortex-M0+ Subsystem in 65 nm CMOS for WSN applications with 14 power domains, 10T SRAM, and integrated voltage regulator. IEEE J. Solid State Circuits 51(1), 31–44 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Tokunaga, J. F. Ryan, C. Augustine, J. P. Kulkarni, Y. Shih, S. T. Kim, R. Jain, K. Bowman, A. Raychowdhury, M. M. Khellah, J. W. Tschanz, V. De, "A Graphics Execution Core in 22nm CMOS featuring adaptive clocking, selective boosting and state-retentive sleep," in IEEE ISSCC Digest of Technical Papers, San Francisco (CA), 2014, pp. 108-109.Google Scholar
  28. 28.
    M. Keating, D. Flynn, A. Gibbons, R. Aitken, K. Shi, Low Power Methodology Manual For System-on-Chip Design (Springer, Berlin, 2007)Google Scholar
  29. 29.
    M. Alioto, Ultra-low power VLSI circuit design demystified and explained: a tutorial. IEEE Trans. Circuits Syst. Pt. I 59(1), 3–29 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Alioto, G. Palumbo, M. Pennisi, Understanding the effect of process variations on the delay of static and domino logic. IEEE Trans. VLSI Syst. 18(5), 697–710 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Eisele, J. Berthold, D. Schmitt-Landsiedel, R. Mahnkopf, The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits. IEEE Trans. VLSI Syst. 5(4), 360–368 (1997)CrossRefGoogle Scholar
  32. 32.
    K. Bowman, S. Duvall, J. Meindl, Impact of Die-to-Die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J. Solid State Circuits 37(2), 183–190 (2002)CrossRefGoogle Scholar
  33. 33.
    N. Nedovic, W.W. Walker, V.G. Oklobdzija, A test circuit for measurement of clocked storage element characteristics. IEEE J. Solid State Circuits 39(8), 1294–1304 (2004)CrossRefGoogle Scholar
  34. 34.
    T.E. Rahkonen, J.T. Kostamovaara, The use of stabilized CMOS delay lines for the digitization of short time intervals. IEEE J. Solid State Circuits 28(8), 887–894 (1993)CrossRefGoogle Scholar
  35. 35.
    P. Dudek, S. Szczepanski, J.V. Hatfield, A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line. IEEE J. Solid State Circuits 35(2), 240–247 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Saurabh Jain
    • 1
  • Longyang Lin
    • 1
  • Massimo Alioto
    • 1
  1. 1.National University of SingaporeSingaporeSingapore

Personalised recommendations