Advertisement

Diffuse Midline Glioma – Diffuse Intrinsic Pontine Glioma

  • Mohammad Hassan A. Noureldine
  • Nir Shimony
  • George I. JalloEmail author
Chapter
  • 54 Downloads

Abstract

Diffuse midline glioma, H3 K27M-mutant, formerly known as diffuse intrinsic pontine glioma (DIPG), is a malignant and infiltrative neoplasm of the pons. DIPG mainly affects the pediatric population and is associated with dismal prognosis, where less than 10% of sufferers survive beyond 2 years from diagnosis. The diagnosis was based upon the typical clinical presentation/progression and imaging features, and biopsy was discouraged at some point due to the associated surgical toxicity. The clinical interest and exponential growth in the number of molecular studies during the last decade have lead to the discovery of selective driver mutations. Consequently, biopsy regained popularity due to the importance of obtaining tissue for diagnostic and research purposes, and therapeutic trials are shifting from conventional strategies (radiation and chemotherapy) towards targeting unique molecular mechanisms. In this chapter, we present an overview of the current standards as well as the most important recent and clinically-relevant advances in the diagnosis and management of DIPG.

Keywords

Diffuse intrinsic pontine glioma Diffuse midline glioma H3 K27M-mutant Brainstem Tumor Pons Diagnosis Cranial nerve palsies Magnetic resonance imaging Biopsy Molecular studies Management Radiation Chemotherapy Targeted therapy 

Abbreviations

ADC

Apparent diffusion coefficient

BBB

Blood-brain barrier

CD44

Cluster of differentiation 44

CED

Convection-enhanced delivery

Cho/Cr

Choline/creatine

CN

Cranial nerve

CNS

Central nervous system

CSF

Cerebrospinal fluid

CT

Computed tomography

DIPG

Diffuse intrinsic pontine glioma

DNA

Deoxyribonucleic acid

DTI

Diffusion tensor imaging

EGFR

Epidermal growth factor receptor

EMA

Epithelial membrane antigen

EZH2

Enhancer of Zeste homologue 2

FA

Fractional anisotropy

FLAIR

Fluid attenuated inversion recovery

GFAP

Glial fibrillary acidic protein

GFAPδ

Glial fibrillary acidic protein delta

HATs

Histone acetyltransferases

HDACs

Histone deacetylases

ICP

Intracranial pressure

LPS

Lansky play scale

MRI

Magnetic resonance imaging

MRS

Magnetic resonance spectroscopy

mTOR

Mammalian target of rapamycin

NAA

N-acetyl aspartate

Olig2

Oligodendrocyte transcription factor 2

PDGFR

Platelet-derived growth factor receptor

PET

Positron emission tomography

PNET

Primitive neuroectodermal tumor

PPCs

Precursor-like cells

PRC2

Polycomb repressive complex 2

RTK

Receptor tyrosine kinase

SAHA

Vorinostat

SPECT

Single photon emission computed tomography

SWI

Susceptibility-weighted imaging

TMZ

Temozolomide

T2∗-GRE

T2∗-weighted gradient echo

WHO

World Health Organization

References

  1. 1.
    Henoch E. Fall VI. Sarcom des pons varoli. Charité-Ann. 1880:461–5.Google Scholar
  2. 2.
    Jacobi MP. Case of probable tumor of the pons. J Nerv Ment Dis. 1889;14(2):115–29.CrossRefGoogle Scholar
  3. 3.
    Williams P. Case of tumour of the pons. Bristol Med Chir J (1883). 1891;9(33):163–7.Google Scholar
  4. 4.
    Mills CK. Tumor of the pons varolii, with conjugate deviation of the eyes and rotation of the head. J Nerv Ment Dis. 1881;8(3):470–81.CrossRefGoogle Scholar
  5. 5.
    Weisenburg T. Extensive gliomatous tumor involving the cerebellum and the posterior portions of the medulla, pons and cerebral peduncle and the posterior limb of one internal capsule. J Am Med Assoc. 1909;53(25):2086–91.CrossRefGoogle Scholar
  6. 6.
    Zenner P. Two cases of tumor of the pons. J Nerv Ment Dis. 1910;37(1):27–36.CrossRefGoogle Scholar
  7. 7.
    Dmetrichuk J, Pendleton C, Jallo G, Quiñones-Hinojosa A. Father of neurosurgery: Harvey Cushing’s early experience with a pediatric brainstem glioma at the Johns Hopkins Hospital. J Neurosurg Pediatr. 2011;8(4):337–41.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bailey P, Eisenhardt L. Spongioblastomas of the brain. J Comp Neurol. 1932;56(2):391–430.CrossRefGoogle Scholar
  9. 9.
    Cushing H. The surgical mortality percentages pertaining to a series of two thousand verified intracranial tumors: standards of computation. Arch Neurol Psychiatr. 1932;27(6):1273–80.CrossRefGoogle Scholar
  10. 10.
    Pilcher C. Spongioblastoma polare of the pons: clinicopathologic study of eleven cases. Arch Neurol Psychiatr. 1934;32(6):1210–29.CrossRefGoogle Scholar
  11. 11.
    Bray PF, Carter S, Taveras JM. Brainstem tumors in children. Neurology. 1958;8(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Whyte T, Colby JM, Layton JD. Radiation therapy of brain-stem tumors. Radiology. 1969;93(2):413–6. passim.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Reigel D, Scarff T, Woodford J. Biopsy of pediatric brain stem tumors. Childs Brain. 1979;5(3):329–40.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Louis D, Ohgaki H, Wiestler O, Cavenee W. WHO classification of tumours of the central nervous system. Revised 4th ed. Geneva: WHO Press; 2016.Google Scholar
  15. 15.
    Jansen M, Van Vuurden D, Vandertop W, Kaspers G. Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev. 2012;38(1):27–35.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Walker D, Punt J, Sokal M. Brainstem tumors. In: Walker D, Perilongo G, Punt J, Taylor R, editors. Brain and spinal tumors of childhood. Oxford: Arnold Publisher; 2004. p. 291–313.CrossRefGoogle Scholar
  17. 17.
    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology. 2017;19(suppl_5):v1–v88.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7(3):241–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Cooney T, Lane A, Bartels U, Bouffet E, Goldman S, Leary SE, et al. Contemporary survival endpoints: an International Diffuse Intrinsic Pontine Glioma Registry Study. Neuro-Oncology. 2017;19(9):1279–80.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Guillamo J-S, Monjour A, Taillandier L, Devaux B, Varlet P, Haie-Meder C, et al. Brainstem gliomas in adults: prognostic factors and classification. Brain. 2001;124(12):2528–39.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ueoka DI, Nogueira J, Campos JC, Maranhão Filho P, Ferman S, Lima MA. Brainstem gliomas—retrospective analysis of 86 patients. J Neurol Sci. 2009;281(1):20–3.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jansen MH, Veldhuijzen van Zanten SE, Sanchez Aliaga E, Heymans MW, Warmuth-Metz M, Hargrave D, et al. Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. Neuro-Oncology. 2015;17(1):160–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Guillamo J-S, Doz F, Delattre J-Y. Brain stem gliomas. Curr Opin Neurol. 2001;14(6):711–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Laigle-Donadey F, Doz F, Delattre J-Y. Brainstem gliomas in children and adults. Curr Opin Oncol. 2008;20(6):662–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Fisher PG, Breiter SN, Carson BS, Wharam MD, Williams JA, Weingart JD, et al. A clinicopathologic reappraisal of brain stem tumor classification. Cancer. 2000;89(7):1569–76.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Epstein FJ, Farmer J-P. Brain-stem glioma growth patterns. J Neurosurg. 1993;78(3):408–12.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sandri A, Sardi N, Genitori L, Giordano F, Peretta P, Basso M, et al. Diffuse and focal brain stem tumors in childhood: prognostic factors and surgical outcome. Childs Nerv Syst. 2006;22(9):1127–35.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Patten J. The brain stem. In: Patten J, editor. Neurological differential diagnosis. 2nd ed. New York: Springer; 1996. p. 162–77.CrossRefGoogle Scholar
  29. 29.
    Hargrave D, Chuang N, Bouffet E. Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J Neuro-Oncol. 2008;86(3):313–9.CrossRefGoogle Scholar
  30. 30.
    Green A, Kieran M. Pediatric brainstem gliomas: new understanding leads to potential new treatments for two very different tumors. Curr Oncol Rep. 2015;17(3):436.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Garzón M, García-Fructuoso G, Guillén A, Suñol M, Mora J, Cruz O. Brain stem tumors in children and adolescents: single institutional experience. Childs Nerv Syst. 2013;29(8):1321–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Soler D, Borzyskowski M. Lower urinary tract dysfunction in children with central nervous system tumours. Arch Dis Child. 1998;79(4):344–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Barkovich A, Krischer J, Kun L, Packer R, Zimmerman R, Freeman C, et al. Brain stem gliomas: a classification system based on magnetic resonance imaging. Pediatr Neurosurg. 1990;16(2):73–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Löbel U, Sedlacik J, Sabin ND, Kocak M, Broniscer A, Hillenbrand CM, et al. Three-dimensional susceptibility-weighted imaging and two-dimensional T2∗-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology. 2010;52(12):1167–77.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, Jallo GI. Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. A review. J Neurosurg Pediatr. 2009;3(4):259–69.PubMedCrossRefGoogle Scholar
  36. 36.
    Ramos A, Hilario A, Lagares A, Salvador E, Perez-Nuñez A, Sepulveda J. Brainstem gliomas. Semin Ultrasound CT MR. 2013;34(2):104–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Hayward RM, Patronas N, Baker EH, Vézina G, Albert PS, Warren KE. Inter-observer variability in the measurement of diffuse intrinsic pontine gliomas. J Neuro-Oncol. 2008;90(1):57–61.CrossRefGoogle Scholar
  38. 38.
    Zukotynski KA, Fahey FH, Kocak M, Alavi A, Wong TZ, Treves ST, et al. Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2011;52(2):188–95.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Prabhu SP, Ng S, Vajapeyam S, Kieran MW, Pollack IF, Geyer R, et al. DTI assessment of the brainstem white matter tracts in pediatric BSG before and after therapy. Childs Nerv Syst. 2011;27(1):11–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Poussaint TY, Kocak M, Vajapeyam S, Packer RI, Robertson RL, Geyer R, et al. MRI as a central component of clinical trials analysis in brainstem glioma: a report from the Pediatric Brain Tumor Consortium (PBTC). Neuro-Oncology. 2011;13(4):417–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Löbel U, Sedlacik J, Reddick WE, Kocak M, Ji Q, Broniscer A, et al. Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol. 2011;32(2):315–22.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lober RM, Cho YJ, Tang Y, Barnes PD, Edwards MS, Vogel H, et al. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J Neuro-Oncol. 2014;117(1):175–82.CrossRefGoogle Scholar
  43. 43.
    Poussaint TY, Vajapeyam S, Ricci KI, Panigrahy A, Kocak M, Kun LE, et al. Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2016;18(5):725–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Zukotynski KA, Vajapeyam S, Fahey FH, Kocak M, Brown D, Ricci KI, et al. Correlation of 18F-FDG PET and MRI apparent diffusion coefficient histogram metrics with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2017;58(8):1264–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Thakur S, Karimi S, Dunkel I, Koutcher J, Huang W. Longitudinal MR spectroscopic imaging of pediatric diffuse pontine tumors to assess tumor aggression and progression. AJNR Am J Neuroradiol. 2006;27(4):806–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro-Oncology. 2011;13(8):904–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Laprie A, Pirzkall A, Haas-Kogan DA, Cha S, Banerjee A, Le TP, et al. Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62(1):20–31.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol. 2001;22(7):1306–15.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Nadvi S, Ebrahim FS, Corr P. The value of 201 thallium-SPECT imaging in childhood brainstem gliomas. Pediatr Radiol. 1998;28(8):575–9.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Epstein F, Wisoff JH. Intrinsic brainstem tumors in childhood: surgical indications. J Neuro-Oncol. 1988;6(4):309–17.CrossRefGoogle Scholar
  51. 51.
    Epstein F, McCleary EL. Intrinsic brain-stem tumors of childhood: surgical indications. J Neurosurg. 1986;64(1):11–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gleason CA, Wise BL, Feinstein B. Stereotactic localization (with computerized tomographic scanning), biopsy, and radiofrequency treatment of deep brain lesions. Neurosurgery. 1978;2(3):217–22.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, Hammond GD. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery. 1993;33(6):1026–30.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Roujeau T, Machado G, Garnett MR, Miquel C, Puget S, Geoerger B, et al. Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg. 2007;107(1 Suppl):1–4.PubMedGoogle Scholar
  55. 55.
    de León FC-P, Perezpena-Diazconti M, Castro-Sierra E, Guerrero-Jazo F, Gordillo-Dominguez L, Gutierrez-Guerra R, et al. Stereotactically-guided biopsies of brainstem tumors. Childs Nerv Syst. 2003;19(5-6):305–10.CrossRefGoogle Scholar
  56. 56.
    Dellaretti M, Touzet G, Reyns N, Dubois F, Gusmão S, Pereira JLB, et al. Correlation among magnetic resonance imaging findings, prognostic factors for survival, and histological diagnosis of intrinsic brainstem lesions in children. J Neurosurg Pediatr. 2011;8(6):539–43.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Rajshekhar V, Moorthy RK. Status of stereotactic biopsy in children with brain stem masses: insights from a series of 106 patients. Stereotact Funct Neurosurg. 2010;88(6):360–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Puget S, Beccaria K, Blauwblomme T, Roujeau T, James S, Grill J, et al. Biopsy in a series of 130 pediatric diffuse intrinsic pontine gliomas. Childs Nerv Syst. 2015;31(10):1773–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Samadani U, Judy KD. Stereotactic brainstem biopsy is indicated for the diagnosis of a vast array of brainstem pathology. Stereotact Funct Neurosurg. 2003;81(1-4):5–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Pincus DW, Richter EO, Yachnis AT, Bennett J, Bhatti MT, Smith A. Brainstem stereotactic biopsy sampling in children. J Neurosurg Pediatr. 2006;104(2):108–14.CrossRefGoogle Scholar
  61. 61.
    Pirotte BJ, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg. 2007;107(5 Suppl):392–9.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Phi JH, Chung H-T, Wang K-C, Ryu SK, Kim S-K. Transcerebellar biopsy of diffuse pontine gliomas in children: a technical note. Childs Nerv Syst. 2013;29(3):489–93.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wang ZJ, Rao L, Bhambhani K, Miller K, Poulik J, Altinok D, et al. Diffuse intrinsic pontine glioma biopsy: a single institution experience. Pediatr Blood Cancer. 2015;62(1):163–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Walker DA, Liu J, Kieran M, Jabado N, Picton S, Packer R, et al. A multi-disciplinary consensus statement concerning surgical approaches to low-grade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro-Oncology. 2013;15(4):462–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kambhampati M, Perez JP, Yadavilli S, Saratsis AM, Hill AD, Ho C-Y, et al. A standardized autopsy procurement allows for the comprehensive study of DIPG biology. Oncotarget. 2015;6(14):12740–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46(5):444–50.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Huang TY, Piunti A, Lulla RR, Qi J, Horbinski CM, Tomita T, et al. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun. 2017;5(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. 2014;14(10):651.CrossRefGoogle Scholar
  69. 69.
    Dellaretti M, Reyns N, Touzet G, Dubois F, Gusmão S, Pereira JLB, et al. Stereotactic biopsy for brainstem tumors: comparison of transcerebellar with transfrontal approach. Stereotact Funct Neurosurg. 2012;90(2):79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Carai A, Mastronuzzi A, De AB, Messina R, Cacchione A, Miele E, et al. Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: a single-center experience. World Neurosurg. 2017;101:584–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Alcantara SL, Chen J, Kwon C, Jackson E, Li Y, Burns D, et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell. 2009;15(1):45–56.CrossRefGoogle Scholar
  72. 72.
    Wang Y, Yang J, Zheng H, Tomasek G, Zhang P, McKeever P, et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell. 2009;15(6):514–26.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bohman L-E, Swanson KR, Moore JL, Rockne R, Mandigo C, Hankinson T, et al. Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery. 2010;67(5):1319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Monje M, Mitra S, Freret M, Raveh T, Kim J, Masek M, et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A. 2011;108(11):4453–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Epstein F. A staging system for brain stem gliomas. Cancer. 1985;56(S7):1804–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bugiani M, van Zanten SEV, Caretti V, Schellen P, Aronica E, Noske DP, et al. Deceptive morphologic and epigenetic heterogeneity in diffuse intrinsic pontine glioma. Oncotarget. 2017;8(36):60447.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol. 2014;128(4):573–81.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hoffman L, DeWire M, Ryall S, Buczkowicz P, Leach J, Miles L, et al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun. 2016;4:1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yoshimura J, Onda K, Tanaka R, Takahashi H. Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurol Med Chir (Tokyo). 2003;43(8):375–82.CrossRefGoogle Scholar
  81. 81.
    Sufit A, Donson AM, Birks DK, Knipstein JA, Fenton LZ, Jedlicka P, et al. Diffuse intrinsic pontine tumors: a study of primitive neuroectodermal tumors versus the more common diffuse intrinsic pontine gliomas. J Neurosurg Pediatr. 2012;10(2):81–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T. H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol. 2013;139(3):345–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lulla R, Saratsis A, Hashizume R. Mutations in chromatin machinery and pediatric high-grade glioma. Sci Adv. 2016;2(3):e1501354.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Schwartzentruber J, Korshunov A, Liu X, Jones D, Pfaff E, Jacob K, et al. Driver mutations in histone H3. 3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Wu G, Broniscer A, McEachron T, Lu C, Paugh B, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Puntonet J, Dangouloff-Ros V, Saffroy R, Pagès M, Andreiuolo F, Grill J, et al. Historadiological correlations in high-grade glioma with the histone 3.3 G34R mutation. J Neuroradiol. 2018;45(5):316–22.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Lewis P, Müller M, Koletsky M, Cordero F, Lin S, Banaszynski L, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–61.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D, et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 2015;129(5):669–78.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Cohen K, Pollack I, Zhou T, Buxton A, Holmes E, Burger P, et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro-Oncology. 2011;13(3):317–23.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130(6):815–27.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lobon-Iglesias M, Giraud G, Castel D, Philippe C, Debily M, Briandet C, et al. Diffuse intrinsic pontine gliomas (DIPG) at recurrence: is there a window to test new therapies in some patients? J Neuro-Oncol. 2018;137(1):111–8.CrossRefGoogle Scholar
  92. 92.
    Khuong-Quang D, Buczkowicz P, Rakopoulos P, Liu X, Fontebasso A, Bouffet E, et al. K27M mutation in histone H3. 3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Fontebasso A, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset P, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet. 2014;46(5):462–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(5):451–6.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Taylor K, Mackay A, Truffaux N, Butterfield Y, Morozova O, Philippe C, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014;46(5):457–61.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28(8):1337–44.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Gilbertson R, Hill D, Hernan R, Kocak M, Geyer R, Olson J, et al. ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res. 2003;9(10 Pt 1):3620–4.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic Pontine Glioma. Cancer Cell. 2017;32(4):520–37.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Levin V, Edwards M, Wara W, Allen J, Ortega J, Vestnys P. 5-Fluorouracil and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) followed by hydroxyurea, misonidazole, and irradiation for brain stem gliomas: a pilot study of the Brain Tumor Research Center and the Childrens Cancer Group. Neurosurgery. 1984;14(6):679-81.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Jenkin R, Boesel C, Ertel I, Evans A, Hittle R, Ortega J, et al. Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. A report of the Childrens Cancer Study Group. J Neurosurg. 1987;66(2):227–33.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hibi T, Shitara N, Genka S, Fuchinoue T, Hayakawa I, Tsuchida T, et al. Radiotherapy for pediatric brain stem glioma: radiation dose, response, and survival. Neurosurgery. 1992;31(4):643–51.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Shrieve D, Wara W, Edwards M, Sneed P, Prados M, Cogen P, et al. Hyperfractionated radiation therapy for gliomas of the brainstem in children and in adults. Int J Radiat Oncol Biol Phys. 1992;24(4):599–610.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Kretschmar C, Tarbell N, Barnes P, Krischer J, Burger P, Kun L. Pre-irradiation chemotherapy and hyperfractionated radiation therapy 66 Gy for children with brain stem tumors. A phase II study of the Pediatric Oncology Group, Protocol 8833. Cancer. 1993;72(4):1404–13.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Packer R, Boyett J, Zimmerman R, Albright A, Kaplan A, Rorke L, et al. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Childrens Cancer Group Phase I/II Trial. Cancer. 1994;74(6):1827–34.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Fleischhack G, Siegler N, Zimmermann M, Warmuth-Metz M, Kortmann R, Massimino M, et al. Concomitant therapy of nimotuzumab and standard radiotherapy for the treatment of newly diagnosed diffuse intrinsic pontine gliomas in children and adolescents: Dipg. 05. Neuro Oncol. 2010;12(6):ii9.Google Scholar
  106. 106.
    Haas-Kogan D, Banerjee A, Poussaint T, Kocak M, Prados M, Geyer J, et al. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro-Oncology. 2011;13(3):298–306.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kivivuori S, Riikonen P, Valanne L, Lönnqvist T, Saarinen-Pihkala U. Antiangiogenic combination therapy after local radiotherapy with topotecan radiosensitizer improved quality of life for children with inoperable brainstem gliomas. Acta Paediatr. 2011;100(1):134–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Massimino M, Bode U, Biassoni V, Fleischhack G. Nimotuzumab for pediatric diffuse intrinsic pontine gliomas. Expert Opin Biol Ther. 2011;11(2):247–56.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Negretti L, Bouchireb K, Levy-Piedbois C, Habrand J, Dhermain F, Kalifa C, et al. Hypofractionated radiotherapy in the treatment of diffuse intrinsic pontine glioma in children: a single institution’s experience. J Neuro-Oncol. 2011;104(3):773–7.CrossRefGoogle Scholar
  110. 110.
    Pollack I, Stewart C, Kocak M, Poussaint T, Broniscer A, Banerjee A, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2011;13(3):290–7.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wolff J, Kortmann R, Wolff B, Pietsch T, Peters O, Schmid H, et al. High dose methotrexate for pediatric high grade glioma: results of the HIT-GBM-D pilot study. J Neuro-Oncol. 2011;102(3):433–42.CrossRefGoogle Scholar
  112. 112.
    Chassot A, Canale S, Varlet P, Puget S, Roujeau T, Negretti L, et al. Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J Neuro-Oncol. 2012;106(2):399–407.CrossRefGoogle Scholar
  113. 113.
    Fontanilla H, Pinnix C, Ketonen L, Woo S, Vats T, Rytting M, et al. Palliative reirradiation for progressive diffuse intrinsic pontine glioma. Am J Clin Oncol. 2012;35(1):51–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Warren K, Bent R, Wolters P, Prager A, Hanson R, Packer R, et al. A phase 2 study of pegylated interferon α-2b (PEG-Intron (®)) in children with diffuse intrinsic pontine glioma. Cancer. 2012;118(14):3607–13.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Wolff J, Rytting M, Vats T, Zage P, Ater J, Woo S, et al. Treatment of recurrent diffuse intrinsic pontine glioma: the MD Anderson Cancer Center experience. J Neuro-Oncol. 2012;106(2):391–7.CrossRefGoogle Scholar
  116. 116.
    Aguilera D, Mazewski C, Hayes L, Jordan C, Esiashivilli N, Janns A, et al. Prolonged survival after treatment of diffuse intrinsic pontine glioma with radiation, temozolamide, and bevacizumab: report of 2 cases. J Pediatr Hematol Oncol. 2013;35(1):e42–6.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Bailey S, Howman A, Wheatley K, Wherton D, Boota N, Pizer B, et al. Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy–results of a United Kingdom phase II trial (CNS 2007 04). Eur J Cancer. 2013;49(18):3856–62.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bradley K, Zhou T, McNall-Knapp R, Jakacki R, Levy A, Vezina G, et al. Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children’s oncology group phase 2 study. Int J Radiat Oncol Biol Phys. 2013;85(1):e55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Janssens G, Jansen M, Lauwers S, Nowak P, Oldenburger F, Bouffet E, et al. Hypofractionation vs conventional radiation therapy for newly diagnosed diffuse intrinsic pontine glioma: a matched-cohort analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):315–20.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kebudi R, Cakir F, Agaoglu F, Gorgun O, Ayan I, Darendeliler E. Pediatric diffuse intrinsic pontine glioma patients from a single center. Childs Nerv Syst. 2013;29(4):583–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Zaky W, Wellner M, Brown R, Blüml S, Finlay J, Dhall G. Treatment of children with diffuse intrinsic pontine gliomas with chemoradiotherapy followed by a combination of temozolomide, irinotecan, and bevacizumab. Pediatr Hematol Oncol. 2013;30(7):623–32.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Massimino M, Biassoni V, Miceli R, Schiavello E, Warmuth-Metz M, Modena P, et al. Results of nimotuzumab and vinorelbine, radiation and re-irradiation for diffuse pontine glioma in childhood. J Neuro-Oncol. 2014;118(2):305–12.Google Scholar
  123. 123.
    Müller K, Schlamann A, Guckenberger M, Warmuth-Metz M, Glück A, Pietschmann S, et al. Craniospinal irradiation with concurrent temozolomide for primary metastatic pediatric high-grade or diffuse intrinsic pontine gliomas. A first report from the GPOH-HIT-HGG Study Group. Strahlenther Onkol. 2014;190(4):377–81.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Zaghloul M, Eldebawy E, Ahmed S, Mousa A, Amin A, Refaat A, et al. Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiol Oncol. 2014;111(1):35–40.CrossRefGoogle Scholar
  125. 125.
    Epelman S, Odone V, Gorender E, Medeiros RSS, Martins L. Phase II study of nimotuzumab and radiotherapy in children and adolescents with newly diagnosed diffuse intrinsic pontine gliomas (DIPG). J Clin Oncol. 2015;33(15_suppl):10061.CrossRefGoogle Scholar
  126. 126.
    Rizzo D, Scalzone M, Ruggiero A, Maurizi P, Attinà G, Mastrangelo S, et al. Temozolomide in the treatment of newly diagnosed diffuse brainstem glioma in children: a broken promise? J Chemother. 2015;27(2):106–10.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Vanan M, Eisenstat D. DIPG in children-what can we learn from the past? Front Oncol. 2015;5:237.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hankinson T, Patibandla M, Green A, Hemenway M, Foreman N, Handler M, et al. Hypofractionated radiotherapy for children with diffuse intrinsic pontine gliomas. Pediatr Blood Cancer. 2016;63(4):716–8.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Hummel T, Salloum R, Drissi R, Kumar S, Sobo M, Goldman S, et al. A pilot study of bevacizumab-based therapy in patients with newly diagnosed high-grade gliomas and diffuse intrinsic pontine gliomas. J Neuro-Oncol. 2016;127(1):53–61.CrossRefGoogle Scholar
  130. 130.
    Janssens G, Gandola L, Bolle S, Mandeville H, Ramos-Albiac M, Benghiat H, et al. Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: a matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. Eur J Cancer. 2017;73:38–47.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    La Madrid AM, Santa-María V, Cruz OM, Mora J, Puerta PR, Guillen AQ, et al. Second re-irradiation for DIPG progression, re-considering “old strategies” with new approaches. Childs Nerv Syst. 2017;33(5):849–52.Google Scholar
  132. 132.
    Macy M, Kieran M, Chi S, Cohen K, MacDonald T, Smith A, et al. A pediatric trial of radiation/cetuximab followed by irinotecan/cetuximab in newly diagnosed diffuse pontine gliomas and high-grade astrocytomas: a Pediatric Oncology Experimental Therapeutics Investigators’ Consortium study. Pediatr Blood Cancer. 2017;64(11):e26621.CrossRefGoogle Scholar
  133. 133.
    Yoshida K, Sulaiman NS, Miyawaki D, Ejima Y, Nishimura H, Ishihara T, et al. Radiotherapy for brainstem gliomas in children and adults: a single-institution experience and literature review. Asia Pac J Clin Oncol. 2017;13(2):e153–e60.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Mandell L, Kadota R, Freeman C, Douglass E, Fontanesi J, Cohen M, et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys. 1999;43(5):959–64.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Janssens G, Gidding C, Van EL, Oldenburger F, Erasmus C, Schouten-Meeteren A, et al. The role of hypofractionation radiotherapy for diffuse intrinsic brainstem glioma in children: a pilot study. Int J Radiat Oncol Biol Phys. 2009;73(3):722–6.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Allen J, Siffert J, Donahue B, Nirenberg A, Jakacki R, Robertson P, et al. A phase I/II study of carboplatin combined with hyperfractionated radiotherapy for brainstem gliomas. Cancer. 1999;86(6):1064–9.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Freeman C, Kepner J, Kun L, Sanford R, Kadota R, Mandell L, et al. A detrimental effect of a combined chemotherapy-radiotherapy approach in children with diffuse intrinsic brain stem gliomas? Int J Radiat Oncol Biol Phys. 2000;47(3):561–4.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Bernier-Chastagner V, Grill J, Doz F, Bracard S, Gentet J, Marie-Cardine A, et al. Topotecan as a radiosensitizer in the treatment of children with malignant diffuse brainstem gliomas: results of a French Society of Paediatric Oncology Phase II Study. Cancer. 2005;104(12):2792–7.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Jennings M, Sposto R, Boyett J, Vezina L, Holmes E, Berger M, et al. Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the Children’s Cancer Group. J Clin Oncol. 2002;20(16):3431–7.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Jalali R, Raut N, Arora B, Gupta T, Dutta D, Munshi A, et al. Prospective evaluation of radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys. 2010;77(1):113–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Sirachainan N, Pakakasama S, Visudithbhan A, Chiamchanya S, Tuntiyatorn L, Dhanachai M, et al. Concurrent radiotherapy with temozolomide followed by adjuvant temozolomide and cis-retinoic acid in children with diffuse intrinsic pontine glioma. Neuro-Oncology. 2008;10(4):577–82.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Korones D, Fisher P, Kretschmar C, Zhou T, Chen Z, Kepner J, et al. Treatment of children with diffuse intrinsic brain stem glioma with radiotherapy, vincristine and oral VP-16: a Children’s Oncology Group phase II study. Pediatr Blood Cancer. 2008;50(2):227–30.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Kim C, Kim S, Phi J, Lee M, Kim I, Kim I, et al. A prospective study of temozolomide plus thalidomide during and after radiation therapy for pediatric diffuse pontine gliomas: preliminary results of the Korean Society for Pediatric Neuro-Oncology study. J Neuro-Oncol. 2010;100(2):193–8.CrossRefGoogle Scholar
  144. 144.
    Michalski A, Bouffet E, Taylor R, Hargrave D, Walker D, Picton S, et al. The addition of high-dose tamoxifen to standard radiotherapy does not improve the survival of patients with diffuse intrinsic pontine glioma. J Neuro-Oncol. 2010;100(1):81–8.CrossRefGoogle Scholar
  145. 145.
    Bouffet E, Raquin M, Doz F, Gentet J, Rodary C, Demeocq F, et al. Radiotherapy followed by high dose busulfan and thiotepa: a prospective assessment of high dose chemotherapy in children with diffuse pontine gliomas. Cancer. 2000;88(3):685–92.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Khan O, La NT. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol. 2012;90(1):85–94.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Dawson M, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Grasso C, Tang Y, Truffaux N, Berlow N, Liu L, Debily M, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med. 2015;21(6):555–9.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Lapin DH, Tsoli M, Ziegler DS. Genomic insights into diffuse intrinsic pontine glioma. Front Oncol. 2017;7:57.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Hummel T, Wagner L, Ahern C, Fouladi M, Reid J, McGovern R, et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children’s Oncology Group phase 1 consortium study. Pediatr Blood Cancer. 2013;60(9):1452–7.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20(12):1394–6.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Mohammad F, Weissmann S, Leblanc B, Pandey D, Højfeldt J, Comet I, et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med. 2017;23(4):483–92.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Piunti A, Hashizume R, Morgan M, Bartom E, Horbinski C, Marshall S, et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med. 2017;23(4):493–500.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Truffaux N, Philippe C, Paulsson J, Andreiuolo F, Guerrini-Rousseau L, Cornilleau G, et al. Preclinical evaluation of dasatinib alone and in combination with cabozantinib for the treatment of diffuse intrinsic pontine glioma. Neuro-Oncology. 2015;17(7):953–64.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Qaddoumi I, Kocak M, Pai AP, Armstrong G, Wetmore C, Crawford J, et al. Phase II trial of erlotinib during and after radiotherapy in children with newly diagnosed high-grade gliomas. Front Oncol. 2014;4:67.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Zhou Z, Singh R, Souweidane M. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol. 2017;15(1):116–28.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Barua N, Lowis S, Woolley M, O’Sullivan S, Harrison R, Gill S. Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir. 2013;155(8):1459–65.PubMedCrossRefGoogle Scholar
  158. 158.
    Souweidane MM, Kramer K, Pandit-Taskar N, Zhou Z, Haque S, Zanzonico P, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):1040–50.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Singleton W, Collins A, Bienemann A, Killick-Cole C, Haynes H, Asby D, et al. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. Int J Nanomedicine. 2017;12:1385–99.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Hassan A. Noureldine
    • 1
  • Nir Shimony
    • 2
  • George I. Jallo
    • 1
    Email author
  1. 1.Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s HospitalSaint PetersburgUSA
  2. 2.Institute of Neuroscience, Geisinger Medical Center, Geisinger Commonwealth School of MedicineDanvilleUSA

Personalised recommendations