Advertisement

Data Envelopment Methodology of Performance Evaluation

  • Harald DyckhoffEmail author
  • Rainer Souren
Chapter
Part of the SpringerBriefs in Business book series (BRIEFSBUSINESS)

Abstract

Chapter  1 has explained why the measurement of effectiveness and efficiency constitutes the core of performance evaluation. While traditional methods of cost/benefit-analysis and management accounting usually measure the performance of activities in monetary terms, data envelopment analysis (DEA) is an important methodology of performance evaluation for activities which are characterised by non-financial data. Chapter  3 uses results of Chapter  2 regarding multi-criteria production theory (MCPT) for linear value functions in order to form a firm foundation of DEA by generalising its common methodology. This generalisation strictly distinguishes between inputs and outputs as basic technological entities on the one hand, respectively costs and benefits as preferentially determined (in general non-financial) performance attributes on the other hand. At first, the relations between DEA and MCPT are explained as well as the question is critically discussed what kind of data may be enveloped by a linear or convex hull. The next three sections analyse the properties of well-known radial and additive DEA models and their systematic generalisations with respect to linear value functions of increasing complexity.

Keywords

Data envelopment analysis Efficiency measurement Generalised cost/benefit-analysis Model selection 

References

  1. Afsharian M, Ahn H, Neumann L (2016) Generalized DEA – An approach for supporting input/output factor determination in DEA. Benchmarking: An International Journal 23:1892–1909Google Scholar
  2. Andersen P, Petersen NC (1993) A procedure for ranking efficient units in Data Envelopment Analysis. Management Science 39:1261–1264CrossRefGoogle Scholar
  3. Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis. Management Science 30:1078–1092CrossRefGoogle Scholar
  4. Barr RS (2004) DEA software tools and technology – A state-of-the-art survey. In: Cooper WW, Seiford LM, Zhu J (ed): Handbook on Data Envelopment Analysis. Springer, Boston et al., pp 539–566Google Scholar
  5. Belton V (1992) Integrating data envelopment analysis with multiple criteria decision analysis. In: Goicoechea A, Duckstein L, Zionts S (ed): Proc. IXth Internat. Conf. Multiple Criteria Decision Making. Springer, Berlin, pp 71–79CrossRefGoogle Scholar
  6. Charnes A, Cooper WW, Rhodes E (1978) Measuring efficiency of decision making units. European Journal of Operational Research 2:429–444CrossRefGoogle Scholar
  7. Charnes A, Cooper WW, Golany B, Seiford L (1985) Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics 30:91–107CrossRefGoogle Scholar
  8. Coelli TJ, Prasada Rao DS, O’Donnell CJ, Battese GE (2005) An Introduction to Efficiency and Productivity Analysis. 2nd ed, Springer, New YorkGoogle Scholar
  9. Cook WD, Tone K, Zhu J (2014) Data envelopment analysis: Prior to choosing a model. Omega 44:1–4CrossRefGoogle Scholar
  10. Cooper WW, Seiford LM, Tone K (2007) Data Envelopment Analysis – A Comprehensive Text with Models, Applications, References and DEA-Solver Software. 2nd ed, Springer, New YorkGoogle Scholar
  11. Dakpo KH, Jeanneaux P, Latruffe L (2016) Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research 250:347–359CrossRefGoogle Scholar
  12. Demski JS, Feltham GA (1976) Cost Determination: A Conceptual Approach. Iowa State University Press, AmesGoogle Scholar
  13. Doyle RH, Green JR (1993) Data envelopment analysis and multiple criteria decision making. Omega 21:713–715CrossRefGoogle Scholar
  14. Dyckhoff H (1992) Betriebliche Produktion: Theoretische Grundlagen einer umweltorientierten Produktionswirtschaft. Springer, Berlin et al.CrossRefGoogle Scholar
  15. Dyckhoff H (2018) Multi-criteria production theory: Foundation of non-financial and sustainability performance evaluation. Journal of Business Economics 88:851–882 ( https://doi.org/10.1007/s11573-017-0885-1; open access)CrossRefGoogle Scholar
  16. Dyckhoff H (2019) Multi-criteria production theory: Convexity propositions and reasonable axioms. Journal of Business Economics 89:719–735CrossRefGoogle Scholar
  17. Dyckhoff H, Ahn H (2010) Verallgemeinerte DEA-Modelle zur Performanceanalyse. Zeitschrift für Betriebswirtschaft 80:1249–1276CrossRefGoogle Scholar
  18. Dyckhoff H, Allen K (2001) Measuring ecological efficiency with Data Envelopment Analysis (DEA). European Journal of Operational Research 132:312–325CrossRefGoogle Scholar
  19. Dyckhoff H, Spengler T (2010) Produktionswirtschaft. 3rd ed, Springer, Berlin et al.CrossRefGoogle Scholar
  20. Dyckhoff H, Rassenhövel S, Sandfort K (2009) Empirische Produktionsfunktion betriebswirtschaftlicher Forschung: Eine Analyse der Daten des Centrums für Hochschulentwicklung. Zeitschrift für betriebswirtschaftliche Forschung 61:22–56CrossRefGoogle Scholar
  21. Dyckhoff H, Quandel A, Waletzke K (2015) Rationality of eco-efficiency methods: Is the BASF analysis dependent on irrelevant alternatives? International Journal of Life Cycle Assessment 20:1557–1567CrossRefGoogle Scholar
  22. Dyson RG, Allen R, Camanho AS, Podinovski VV, Sarrico CC, Shale EA (2001) Pitfalls and protocols in DEA. European Journal of Operational Research 132:245–259CrossRefGoogle Scholar
  23. Emrouznejad A, De Witte K (2010) COOPER-framework: A unified process for non-parametric projects. European Journal of Operational Research 207:1573–1586CrossRefGoogle Scholar
  24. Fandel G, Lorth M (2009) On the technical (in)efficiency of a profit maximum. International Journal of Production Economics 121: 409–426CrossRefGoogle Scholar
  25. Färe R, Grosskopf S, Lovell CAK (1994) Production frontiers. Cambridge University Press, CambridgeGoogle Scholar
  26. Frisch R (1965) Theory of Production. D Reidel Publ, DordrechtCrossRefGoogle Scholar
  27. Halme M, Joro T, Korhonen P, Salo S, Wallenius J (1999) A value efficiency approach to incorporating preference information in data envelopment analysis. Management Science 45:103–115CrossRefGoogle Scholar
  28. Hauschild MZ, Huijbregts MAJ (2015) Life Cycle Impact Assessment. Springer, DordrechtGoogle Scholar
  29. Joro T, Korhonen P (2015) Extension of Data Envelopment Analysis with Preference Information. Springer, New YorkGoogle Scholar
  30. Joro T, Korhonen P, Wallenius J (1998) Structural comparison of data envelopment analysis and multiple objective linear programming. Management Science 44:962–970CrossRefGoogle Scholar
  31. Kuosmanen T, Kortelainen M (2005) Measuring eco-efficiency of production with Data Envelopment Analysis. Journal of Industrial Ecology 9:59–72CrossRefGoogle Scholar
  32. Lampe HW, Hilgers D (2015) Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA. European Journal of Operational Research 240:1–21CrossRefGoogle Scholar
  33. Liu JS, Lu LYY, Lu WM, Lin BJY (2013a) Data envelopment analysis 1978-2010: A citation-based literature survey. Omega 41:3–15CrossRefGoogle Scholar
  34. Liu JS, Lu LYY, Lu WM, Lin BJY (2013b) A survey of DEA applications. Omega 41:893–902CrossRefGoogle Scholar
  35. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013): Anthropogenic and Natural Radiative Forcing. In: Change Stocker, TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, Cambridge/New York, pp 659–740Google Scholar
  36. Song M, An Q, Zhang W, Wang Z, Wu J (2012) Environmental efficiency evaluation based on data envelopment analysis: A review. Renewable and Sustainable Energy Reviews 16:4465–4469CrossRefGoogle Scholar
  37. Thanassoulis E, Portela MCS, Despic O (2008) Data Envelopment Analysis: The mathematical programming approach to efficiency analysis. In: Fried HO, Knox Lovell CA, Schmidt SS (ed) The Measurement of Productive Efficiency and Productivity Growth. Oxford University, New York, pp 251–420CrossRefGoogle Scholar
  38. Tone KA (2001) A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research 130:498–509CrossRefGoogle Scholar
  39. Tone KA (2002) A slacks-based measure of super-efficiency in Data Envelopment Analysis. European Journal of Operational Research 143:32–34CrossRefGoogle Scholar
  40. Wallenius J, Dyer JS, Fishburn PC, Steuer RE, Zionts S, Deb K (2008) Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead. Management Science 54:1336–1349CrossRefGoogle Scholar
  41. Wojcik V (2018) Performanceanalyse mittels Verallgemeinerter Data Envelopment Analysis: Vorgehensmodell und Evaluation. Dr. Kovač, HamburgGoogle Scholar
  42. Wojcik V, Dyckhoff H, Gutgesell S (2017) The desirable input of undesirable factors in Data Envelopment Analysis. Annals of Operations Research 259:461–484CrossRefGoogle Scholar
  43. Wojcik V, Dyckhoff H, Clermont M (2019) Is data envelopment analysis a suitable tool for performance measurement and benchmarking in non-production contexts? Business Research 12(2): 559–595 ( https://doi.org/10.1007/s40685-018-0077-z; open access)CrossRefGoogle Scholar
  44. Zhang N, Choi Y (2014) A note on evolution of directional distance function and its development in energy and environment studies 1997–2013. Renewable and Sustainable Energy Reviews 33:50–59CrossRefGoogle Scholar
  45. Zhou Z, Liu W (2015) DEA models with undesirable inputs, intermediates, and outputs. In: Zhu J (ed): Data Envelopment Analysis. Springer, New York, pp 415–446Google Scholar
  46. Zhu J (ed) (2015) Data Envelopment Analysis. Springer, New YorkGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Business and EconomicsRWTH Aachen UniversityRheineGermany
  2. 2.Group of Sustainable Production and Logistics ManagementIlmenau University of TechnologyIlmenauGermany

Personalised recommendations