Advertisement

Radiobiologic Factors to Consider with Total Marrow Irradiation

  • Susanta K. HuiEmail author
  • Guy Storme
Chapter
  • 29 Downloads

Abstract

Total Marrow Irradiation (TMI) is an emerging, technologically advanced radiation conditioning regimen that can simultaneously delivery radiation to specific body structures with high hematological disease burden and reduce radiation to organs at risk in order to maintain function. The result is an extraordinary ability to modulate the radiation dose to a very large extended target through the body, effecting a paradigm shift in the treatment of hematological malignancies. However, the radiobiological relevance is beginning to emerge and will be a valuable step for advancing the clinical benefit of this new technology. Toward this goal, we address the pathology of hematological disease, the historical relevance of total body irradiation and its limitations that led to TMI development, and key factors that are associated with radiobiological assessment. Furthermore, a vision of the future of radiology is discussed, in which we are expected to achieve an improved understanding of the complex and extended nature of disease and its associated microenvironment.

Keywords

Total body irradiation Total marrow irradiation Hematological malignancies Stem cell transplantation Biological effective dose Organ toxicities Tumor microenvironment. 

References

  1. 1.
    A.C. Society, Cancer facts and figures, (2019).Google Scholar
  2. 2.
    Cowen D, Richaud P, Landriau S, Lagarde P, Mahon F-X, Baudet J-J, Belloc F, Gualde N, Reiffers J. Radiobiological features of acute myeloblastic leukemia: comparison of self-renewal versus terminally differentiated populations. Int J Radiat Oncol Biol Phys. 1994;30(5):1133–40.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Shankland KR, Armitage JO, Hancock BW. Non-hodgkin lymphoma. Lancet. 2012;380(9844):848–57.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Eleutherakis-Papaiakovou V, Bamias A, Gika D, Simeonidis A, Pouli A, Anagnostopoulos A, Michali E, Economopoulos T, Zervas K, Dimopoulos on behalf of the Greek Myeloma Study Group. Renal failure in multiple myeloma: incidence, correlations, and prognostic significance. Leuk Lymphoma. 2007;48(2):337–41.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, Fonseca R, Rajkumar SV, Offord JR, Larson DR. Review of 1027 patients with newly diagnosed multiple myeloma, Mayo Clinic proceedings. Amsterdam: Elsevier; 2003. p. 21–33.Google Scholar
  6. 6.
    Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rajkumar SV, Kyle RA. Multiple myeloma: diagnosis and treatment, Mayo Clinic proceedings. Amsterdam: Elsevier; 2005. p. 1371–82.Google Scholar
  8. 8.
    Dores GM, Landgren O, McGlynn KA, Curtis RE, Linet MS, Devesa SS. Plasmacytoma of bone, extramedullary plasmacytoma, and multiple myeloma: incidence and survival in the United States, 1992–2004. Br J Haematol. 2009;144(1):86–94.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Varettoni M, Corso A, Pica G, Mangiacavalli S, Pascutto C, Lazzarino M. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol. 2009;21(2):325–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Mikhael J, Ismaila N, Cheung MC, Costello C, Dhodapkar MV, Kumar S, Lacy M, Lipe B, Little RF, Nikonova A. Treatment of multiple myeloma: ASCO and CCO joint clinical practice guideline. J Clin Oncol. 2019;37(14):1228–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Röntgen WC. On a new kind of rays. Science. 1896;3(59):227–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Despeignes V. Observation concernant un cas de cancer de l'estomac traite par les rayons Rontgen. Lyon Méd J. 1896;82:428–30. 503-506Google Scholar
  13. 13.
    Grubbe EH. X-rays in the treatment of cancer and other malignant diseases. Med Rec (1866–1922). 1902;62(18):692.Google Scholar
  14. 14.
    Garland LH, Kennedy BR. Roentgen treatment of multiple myeloma. Radiology. 1948;50(3):297–317.PubMedCrossRefGoogle Scholar
  15. 15.
    Bosch A, Frias Z. Radiotherapy in the treatment of multiple myeloma. Int J Radiat Oncol Biol Phys. 1988;15(6):1363–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Tobias JS, Richards JD, Blackman G, Joannides T, Trask C, Nathan JI. Hemibody irradiation in multiple myeloma. Radiother Oncol. 1985;3(1):11–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol. 2007;25(11):1423–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Rudzianskiene M, Inciura A, Gerbutavicius R, Rudzianskas V, Macas A, Simoliuniene R, Dambrauskiene R, Kiavialaitis GE, Juozaityte E. Single vs. multiple fraction regimens for palliative radiotherapy treatment of multiple myeloma. Strahlenther Onkol. 2017;193(9):742–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Matuschek C, Ochtrop TA, Bölke E, Ganswindt U, Fenk R, Gripp S, Kröpil P, Gerber PA, Kammers K, Hamilton J. Effects of radiotherapy in the treatment of multiple myeloma: a retrospective analysis of a single institution. Radiat Oncol. 2015;10(1):71.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Liebross RH, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R. Solitary bone plasmacytoma: outcome and prognostic factors following radiotherapy. Int J Radiat Oncol Biol Phys. 1998;41(5):1063–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Talamo G, Dimaio C, Abbi KK, Pandey MK, Malysz J, Creer MH, Zhu J, Mir MA, Varlotto JM. Current role of radiation therapy for multiple myeloma. Front Oncol. 2015;5:40.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kyle RA, Rajkumar SV. Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma. 2009;9(4):278–88.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Brody H. Multiple myeloma. Nature. 2011;480(7377):S33.PubMedCrossRefGoogle Scholar
  24. 24.
    McSweeney E, Tobias J, Blackman G, Goldstone A, Richards J. Double hemibody irradiation (DHBI) in the management of relapsed and primary chemoresistant multiple myeloma. Clin Oncol. 1993;5(6):378–83.CrossRefGoogle Scholar
  25. 25.
    Thomas P, Daban A, Bontoux D. Double hemibody irradiation in chemotherapy-resistant multiple myeloma. Cancer Treat Rep. 1984;68(9):1173–6.PubMedGoogle Scholar
  26. 26.
    Troussard X, Macro M, Vie B, Batho A, Peny A, Reman O, Tabah I, Leporrier M. Human recombinant granulocyte-macrophage colony stimulating factor (hrGM-CSF) improves double hemibody irradiation (DHBI) tolerance in patients with stage III multiple myeloma: a pilot study. Br J Haematol. 1995;89(1):191–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Teschendorf W. Uber Bestrahlung des ganzen menschliclhen Korpers bei Blutklrankheiten. Shrahlentherapie. 1927;26:720–8.Google Scholar
  28. 28.
    Andrews G, Sitterson B, White D, Kniseley R, Comas F. Summary of clinical total-body irradiation program. Oak Ridge Institute of Nuclear Studies, Medical Division, Research Report for 1962.Google Scholar
  29. 29.
    Draeger R, Lee R, Shea T Jr, Whitten F, Eicher M. Design and construction of a radiocobalt large animal irradiator. Bethesda, MD: Naval Medical Research Inst; 1953.Google Scholar
  30. 30.
    Hayes R, Oddie T, Brucer M. Dose comparison of two total-body irradiation facilities. Int J Appl Radiat Isot. 1964;15(6):313–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Heublein AC. A preliminary report on continuous irradiation of the entire body. Radiology. 1932;18(6):1051–62.CrossRefGoogle Scholar
  32. 32.
    Jacobs ML, Marasso FJ. A four-year experience with total-body irradiation. Radiology. 1965;84(3):452–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Jacobs ML, Pape L. A total body irradiation chamber and its uses. Int J Appl Radiat Isot. 1960;8:141–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959;38:1709–16.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Meulenbeld GJ. A history of Indian medical literature, E. Forsten Groningen. 1999.Google Scholar
  36. 36.
    Tagliacozzi G. Decurtorum cirugia per insitionum. Venice, Italy: Bindonum; 1597.Google Scholar
  37. 37.
    Carrel A. Results of the transplantation of blood vessels, organs and limbs. JAMA. 1908;51(20):1662–7.CrossRefGoogle Scholar
  38. 38.
    Medawar PB. Immunity to homologous grafted skin. III. The fate of skin homographs transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 1948;29(1):58.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jacobson L. The effect of spleen protection on mortaility following X-irradiation. J Lab Clin Med. 1949;34:1538.Google Scholar
  40. 40.
    Lorenz E, Uphoff D, Reid T, Shelton E. Modification of irradiation injury in mice and Guinea pigs by bone marrow injections. J Natl Cancer Inst. 1951;12(1):197–201.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Cavins JA, KASAKURA S, THOMAS ED, FERREBEE JW. Recovery of lethally irradiated dogs following infusion of autologous marrow stored at low temperature in dimethyl-sulphoxide. Blood. 1962;20(6):730–4.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Barnes D, Corp M, Loutit J, Neal F. Treatment of murine leukaemia with x rays and homologous bone marrow. Br Med J. 1956;2(4993):626.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Barlogie B, Attal M, Crowley J, van Rhee F, Szymonifka J, Moreau P, Durie BG, Harousseau J-L. Long-term follow-up of autotransplantation trials for multiple myeloma: update of protocols conducted by the intergroupe francophone du myelome, southwest oncology group, and university of Arkansas for medical sciences. J Clin Oncol. 2010;28(7):1209.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ghobrial IM, Stewart AK. ASH evidence-based guidelines: what is the role of maintenance therapy in the treatment of multiple myeloma? Hematology Am Soc Hematol Educ Program. 2009;2009(1):587–9.CrossRefGoogle Scholar
  45. 45.
    Adkins DR, DiPersio JF. Total body irradiation before an allogeneic stem cell transplantation: is there a magic dose? Curr Opin Hematol. 2008;15(6):555–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Zaucha RE, Buckner DC, Barnett T, Holmberg LA, Gooley T, Hooper HA, Maloney DG, Appelbaum F, Bensinger WI. Modified total body irradiation as a planned second high-dose therapy with stem cell infusion for patients with bone-based malignancies. Int J Radiat Oncol Biol Phys. 2006;64(1):227–34.CrossRefGoogle Scholar
  47. 47.
    Moreau P, Facon T, Attal M, Hulin C, Michallet M, Maloisel F, Sotto J-J, Guilhot F, Marit G, Doyen C. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5.CrossRefGoogle Scholar
  48. 48.
    Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F, Giaccone L, Sorasio R, Omedè P, Baldi I. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356(11):1110–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Garban F, Attal M, Michallet M, Hulin C, Bourhis JH, Yakoub-Agha I, Lamy T, Marit G, Maloisel F, Berthou C. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood. 2006;107(9):3474–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Lahuerta JJ, Martinez-Lopez J, Grande C, Bladé J, Serna JDL, Alegre A, García-Laraña J, Caballero D, Sureda A, Rubia JDL. Conditioning regimens in autologous stem cell transplantation for multiple myeloma: a comparative study of efficacy and toxicity from the Spanish registry for transplantation in multiple myeloma. Br J Haematol. 2000;109(1):138–47.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Shimizu T, Motoji T, Oshimi K, Mizoguchi H. Proliferative state and radiosensitivity of human myeloma stem cells. Br J Cancer. 1982;45(5):679.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Goel A, Dispenzieri A, Geyer SM, Greiner S, Peng K-W, Russell SJ. Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma. Blood. 2006;107(10):4063–70.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res. 2012;10(8):1052–64.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Amin AE, Wheldon TE, O'Donoghue JA, Gaze MN, Barrett A. Optimum combination of targeted 131I and total body irradiation for treatment of disseminated cancer. Int J Radiat Oncol Biol Phys. 1995;32(3):713–21.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Dingli D, Peng K-W, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R, Morris JC, Russell SJ. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 2004;103(5):1641–6.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Goel A, Carlson SK, Classic KL, Greiner S, Naik S, Power AT, Bell JC, Russell SJ. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV (Δ51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood. 2007;110(7):2342–50.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Illidge TM, Bayne M, Brown NS, Chilton S, Cragg MS, Glennie MJ, Du Y, Lewington V, Smart J, Thom J. Phase 1/2 study of fractionated 131I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood. 2009;113(7):1412–21.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Supiot S, Gouard S, Charrier J, Apostolidis C, Chatal J-F, Barbet J, Davodeau F, Cherel M. Mechanisms of cell sensitization to α radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Clin Cancer Res. 2005;11(19):7047s–52s.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Supiot S, Thillays F, Rio E, Gouard S, Morgenstern A, Bruchertseifer F, Mahé M-A, Chatal J-F, Davodeau F, Chérel M. Gemcitabine radiosensitizes multiple myeloma cells to low let, but not high let, irradiation. Radiother Oncol. 2007;83(1):97–101.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chatterjee M, Chakraborty T, Tassone P. Multiple myeloma: monoclonal antibodies-based immunotherapeutic strategies and targeted radiotherapy. Eur J Cancer. 2006;42(11):1640–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee B-N, Dantzer R, Langley KE, Bennett GJ, Dougherty PM, Dunn AJ, Meyers CA, Miller AH, Payne R, Reuben JM. A cytokine-based neuroimmunologic mechanism of cancer-related symptoms. Neuroimmunomodulation. 2004;11(5):279–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Reyes-Gibby CC, Wu X, Spitz M, Kurzrock R, Fisch M, Bruera E, Shete S. Molecular epidemiology, cancer-related symptoms, and cytokines pathway. Lancet Oncol. 2008;9(8):777–85.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Reyes-Gibby CC, Wang J, Spitz M, Wu X, Yennurajalingam S, Shete S. Genetic variations in interleukin-8 and interleukin-10 are associated with pain, depressed mood, and fatigue in lung cancer patients. J Pain Symptom Manag. 2013;46(2):161–72.CrossRefGoogle Scholar
  64. 64.
    Deeg H, Sullivan K, Buckner C, Storb R, Appelbaum F, Clift R, Doney K, Sanders J, Witherspoon R, Thomas E. Marrow transplantation for acute nonlymphoblastic leukemia in first remission: toxicity and long-term follow-up of patients conditioned with single dose or fractionated total body irradiation. Bone Marrow Transplant. 1986;1(2):151–7.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Girinsky T, Benhamou E, Bourhis J-H, Dhermain F, Guillot-Valls D, Ganansia V, Luboinski M, Perez A, Cosset JM, Socie G. Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies. J Clin Oncol. 2000;18(5):981.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Labar B, Bogdanić V, Nemet D, Mrsić M, Vrtar M, Grgić-Markulin L, Kalenić S, Vujasinović S, Presecki V, Jakić-Razumović J. Total body irradiation with or without lung shielding for allogeneic bone marrow transplantation. Bone Marrow Transplant. 1992;9(5):343–7.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Shank B, O'Reilly RJ, Cunningham I, Kernan N, Yaholom J, Brochstein J, Castro-Malaspina H, Kutcher G, Mohan R, Bonfiglio P. Total body irradiation for bone marrow transplantation: the Memorial Sloan-Kettering Cancer Center experience. Radiother Oncol. 1990;18:68–81.CrossRefGoogle Scholar
  68. 68.
    Fowler JF. Development of radiobiology for oncology—a personal view. Phys Med Biol. 2006;51(13):R263.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Appelbaum FR. The influence of total dose, fractionation, dose rate, and distribution of total body irradiation on bone marrow transplantation. Semin Oncol. 1993;20(4 Suppl 4):3–10. quiz 11PubMedPubMedCentralGoogle Scholar
  70. 70.
    Gallini R, Hendry J, Molineux G, Testa N. The effect of low dose rate on recovery of hemopoietic and stromal progenitor cells in ?-irradiated mouse bone marrow. Radiat Res. 1988;115:481–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Feola JM, Song CW, Khan FM, Levitt SH. Lethal response of C57BL mice to 10 MeV x-rays and to 60Co gamma-rays. Int J Radiat Biol Relat Stud Phys Chem Med. 1974;26(2):161–5.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ling C, Gerweck L, Zaider M, Yorke E. Dose-rate effects in external beam radiotherapy redux. Radiother Oncol. 2010;95(3):261–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Welsh J, Howard S, Fowler J. Dose rate in external beam radiotherapy for prostate cancer: an overlooked confounding variable? Urology. 2003;62(2):204.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Belkacemi Y, Ozsahin M, Pene F, Rio B, Laporte JP, Leblond V, Touboul E, Schlienger M, Gorin NC, Laugier A. Cataractogenesis after total body irradiation. Int J Radiat Oncol Biol Phys. 1996;35(1):53–60.CrossRefGoogle Scholar
  75. 75.
    COGAN DG, Donaldson DD, REESE AB. Clinical and pathological characteristics of radiation cataract. AMA Arch Ophthalmol. 1952;47(1):55–70.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    van Kempen-Harteveld ML, Belkacémi Y, Kal HB, Labopin M, Frassoni F. Dose-effect relationship for cataract induction after single-dose total body irradiation and bone marrow transplantation for acute leukemia. Int J Radiat Oncol Biol Phys. 2002;52(5):1367–74.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. 1995;31(5):1249–56.PubMedCrossRefGoogle Scholar
  78. 78.
    Lawton C, Cohen E, Murray K, Derus S, Casper J, Drobyski W, Horowitz M, Moulder J. Long-term results of selective renal shielding in patients undergoing total body irradiation in preparation for bone marrow transplantation. Bone Marrow Transplant. 1997;20(12):1069.PubMedCrossRefGoogle Scholar
  79. 79.
    Miralbell R, Sancho G, Bieri S, Carrió I, Helg C, Brunet S, Martin P-Y, Sureda A, De Segura GG, Chapuis B. Renal insufficiency in patients with hematologic malignancies undergoing total body irradiation and bone marrow transplantation: a prospective assessment. Int J Radiat Oncol Biol Phys. 2004;58(3):809–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Bruno B, Souillet G, Bertrand Y, Werck-Gallois M, Satta AS, Bellon G. Effects of allogeneic bone marrow transplantation on pulmonary function in 80 children in a single paediatric Centre. Bone Marrow Transplant. 2004;34(2):143.PubMedCrossRefGoogle Scholar
  81. 81.
    Della Volpe A, Ferreri AJMa, Annaloro C, Mangili P, Rosso A, Calandrino R, Villa E, Lambertenghi-Deliliers G, Fiorino C. Lethal pulmonary complications significantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation. Int J Radiat Oncol Biol Phys. 2002;52(2):483–8.CrossRefGoogle Scholar
  82. 82.
    Abugideiri M, Nanda RH, Butker C, Zhang C, Kim S, Chiang K-Y, Butker E, Khan MK, Haight AE, Chen Z. Factors influencing pulmonary toxicity in children undergoing allogeneic hematopoietic stem cell transplantation in the setting of total body irradiation-based myeloablative conditioning. Int J Radiat Oncol Biol Phys. 2016;94(2):349–59.CrossRefGoogle Scholar
  83. 83.
    Ozsahin M, Pène F, Touboul E, Gindrey-Vie B, Dominique C, Lefkopoulos D, Krzisch C, Balosso J, Vitu L, Schwartz LH. Total-body irradiation before bone marrow transplantation. Results of two randomized instantaneous dose rates in 157 patients. Cancer. 1992;69(11):2853–65.CrossRefGoogle Scholar
  84. 84.
    Sampath S, Schultheiss TE, Wong J. Dose response and factors related to interstitial pneumonitis after bone marrow transplant. Int J Radiat Oncol Biol Phys. 2005;63(3):876–84.CrossRefGoogle Scholar
  85. 85.
    Tarbell NJ, Amato DA, Down JD, Mauch P, Hellman S. Fractionation and dose rate effects in mice: a model for bone marrow transplantation in man. Int J Radiat Oncol Biol Phys. 1987;13(7):1065–9.CrossRefGoogle Scholar
  86. 86.
    Travis EL, Peters L, McNeill J, Thames H Jr, Karolis C. Effect of dose-rate on total body irradiation: lethality and pathologic findings. Radiother Oncol. 1985;4(4):341–51.CrossRefGoogle Scholar
  87. 87.
    Weiner RS, Bortin MM, Gale RP, Gluckman E, Kay HE, Kolb H-J, Hartz AJ, Rimm AA. Interstitial pneumonitis after bone marrow transplantation: assessment of risk factors. Ann Intern Med. 1986;104(2):168–75.CrossRefGoogle Scholar
  88. 88.
    Gerbi BJ, Dusenbery KE. Design specifications for a treatment stand used for total body photon irradiation with patients in a standing position. Med Dosim. 1995;20(1):25–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Hui S, Verneris M, Froelich J, Dusenbery K, Welsh J. Multimodality image guided total marrow irradiation and verification of the dose delivered to the lung, PTV, and thoracic bone in a patient: a case study. Technol Cancer Res Treat. 2009;8(1):23.PubMedCrossRefGoogle Scholar
  90. 90.
    Hui SK. Helical tomotherapy targeting total bone marrow–first clinical experience at the University of Minnesota. Acta Oncol. 2007;46(2):250–5.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hui SK, Kapatoes J, Fowler J, Henderson D, Olivera G, Manon RR, Gerbi B, Mackie TR, Welsh JS. Feasibility study of helical tomotherapy for total body or total marrow irradiation. Med Phys. 2005;32(10):3214–24.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Glass TJ, Hui SK, Blazar BR, Lund TC. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish. PLoS One. 2013;8(9):e73745.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hui SK, Das R, Thomadsen B, Henderson D. CT-based analysis of dose homogeneity in total body irradiation using lateral beam. J Appl Clin Med Phys. 2004;5(4):71–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wheldon TE, Barrett A. Radiobiological modelling of the treatment of leukaemia by total body irradiation. Radiother Oncol. 2001;58(3):227–33.PubMedCrossRefGoogle Scholar
  95. 95.
    Kal HB, van Kempen-Harteveld ML, Heijenbrok-Kal MH, Struikmans H. Biologically effective dose in total-body irradiation and hematopoietic stem cell transplantation. Strahlenther Onkol. 2006;182(11):672–9.CrossRefGoogle Scholar
  96. 96.
    Marks DI, Forman SJ, Blume KG, Pérez WS, Weisdorf DJ, Keating A, Gale RP, Cairo MS, Copelan EA, Horan JT. A comparison of cyclophosphamide and total body irradiation with etoposide and total body irradiation as conditioning regimens for patients undergoing sibling allografting for acute lymphoblastic leukemia in first or second complete remission. Biol Blood Marrow Transplant. 2006;12(4):438–53.CrossRefGoogle Scholar
  97. 97.
    Clift RA, Buckner CD, Appelbaum FR, Bearman S, Petersen F, Fisher L, Anasetti C, Beatty P, Bensinger W, Doney K. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens [see comments]. Blood. 1990;76(9):1867–71.CrossRefGoogle Scholar
  98. 98.
    Clift RA, Buckner CD, Appelbaum FR, Bryant E, Bearman SI, Petersen FB, Fisher L, Anasetti C, Beatty P, Bensinger W. Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood. 1991;77(8):1660–5.CrossRefGoogle Scholar
  99. 99.
    Schultheiss TE, Wong J, Liu A, Olivera G, Somlo G. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy. Int J Radiat Oncol Biol Phys. 2007;67(4):1259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wong JY, Forman S, Somlo G, Rosenthal J, Liu A, Schultheiss T, Radany E, Palmer J, Stein A. Dose escalation of total marrow irradiation with concurrent chemotherapy in patients with advanced acute leukemia undergoing allogeneic hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2013;85(1):148–56.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wong JY, Liu A, Schultheiss T, Popplewell L, Stein A, Rosenthal J, Essensten M, Forman S, Somlo G. Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol Blood Marrow Transplant. 2006;12(3):306–15.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wong JY, Rosenthal J, Liu A, Schultheiss T, Forman S, Somlo G. Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2009;73(1):273–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Aydogan B, Mundt AJ, Roeske JC. Linac-based intensity modulated total marrow irradiation (IM-TMI). Technol Cancer Res Treat. 2006;5(5):513–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Aydogan B, Yeginer M, Kavak GO, Fan J, Radosevich JA, Gwe-Ya K. Total marrow irradiation with RapidArc volumetric arc therapy. Int J Radiat Oncol Biol Phys. 2011;81(2):592–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Somlo G, Spielberger R, Frankel P, Karanes C, Krishnan A, Parker P, Popplewell L, Sahebi F, Kogut N, Snyder D. Total marrow irradiation: a new ablative regimen as part of tandem autologous stem cell transplantation for patients with multiple myeloma. Clin Cancer Res. 2011;17(1):174–82.CrossRefGoogle Scholar
  106. 106.
    Stein A, Palmer J, Tsai N-C, Al Malki MM, Aldoss I, Ali H, Aribi A, Farol L, Karanes C, Khaled S. Phase I trial of total marrow and lymphoid irradiation transplantation conditioning in patients with relapsed/refractory acute leukemia. Biol Blood Marrow Transplant. 2017;23(4):618–24.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Stein AS, O'Donnell MR, Synold TW, Dagis AC, Tsirunyan A, Nademanee AP, Parker PM, Pullarkat VA, Snyder DS, Spielberger RT. Phase-2 trial of an intensified conditioning regimen for allogeneic hematopoietic cell transplant for poor-risk leukemia. Bone Marrow Transplant. 2011;46(9):1256.CrossRefGoogle Scholar
  108. 108.
    Stein A, Palmer J, Tsai NC, Al Malki MM, Aldoss I, Ali H, Aribi A, Farol L, Karanes C, Khaled S, Liu A, O’Donnell M, Parker P, Pawlowska A, Pullarkat V, Radany E, Rosenthal J, Sahebi F, Salhotra A, Sanchez JF, Schultheiss T, Spielberger R, Thomas SH, Snyder D, Nakamura R, Marcucci G, Forman SJ, Wong J. Phase I Trial of Total Marrow and Lymphoid Irradiation Transplantation Conditioning in Patients with Relapsed/Refractory Acute Leukemia. Biol Blood Marrow Transplant. 2017;23(4):618–24.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hui S, Brunstein C, Takahashi Y, DeFor T, Holtan SG, Bachanova V, Wilke C, Zuro D, Ustun C, Weisdorf D. Dose escalation of total marrow irradiation in high-risk patients undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23(7):1110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Patel P, Oh AL, Koshy M, Sweiss K, Saraf SL, Quigley JG, Khan I, Mahmud N, Hacker E, Ozer H. A phase 1 trial of autologous stem cell transplantation conditioned with melphalan 200 mg/m2 and total marrow irradiation (TMI) in patients with relapsed/refractory multiple myeloma. Leuk Lymphoma. 2018;59(7):1666–71.CrossRefGoogle Scholar
  111. 111.
    Rosenthal J, Wong J, Stein A, Qian D, Hitt D, Naeem H, Dagis A, Thomas SH, Forman S. Phase 1/2 trial of total marrow and lymph node irradiation to augment reduced-intensity transplantation for advanced hematologic malignancies. Blood. 2011;117(1):309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Morton LM, Dores GM, Schonfeld SJ, Linet MS, Sigel BS, Lam CJK, Tucker MA, Curtis RE. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 2018;5(3):318–25.PubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bhatia S, Robison LL, Oberlin O, Greenberg M, Bunin G, Fossati-Bellani F, Meadows AT. Breast cancer and other second neoplasms after childhood Hodgkin's disease. N Engl J Med. 1996;334(12):745–51.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Boivin JF, Hutchison GB, Zauber AG, Bernstein L, Davis FG, Michel RP, Zanke B, Tan CT, Fuller LM, Mauch P, et al. Incidence of second cancers in patients treated for Hodgkin's disease. J Natl Cancer Inst. 1995;87(10):732–41.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Majhail NS. Long-term complications after hematopoietic cell transplantation. Hematol Oncol Stem Cell Ther. 2017;10(4):220–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Pui CH, Ribeiro RC, Hancock ML, Rivera GK, Evans WE, Raimondi SC, Head DR, Behm FG, Mahmoud MH, Sandlund JT, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med. 1991;325(24):1682–7.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Travis LB, Curtis RE, Glimelius B, Holowaty E, Van Leeuwen FE, Lynch CF, Adami J, Gospodarowicz M, Wacholder S, Inskip P, et al. Second cancers among long-term survivors of non-Hodgkin's lymphoma. J Natl Cancer Inst. 1993;85(23):1932–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Rossnagl S, Ghura H, Groth C, Altrock E, Jakob F, Schott S, Wimberger P, Link T, Kuhlmann JD, Stenzl A. A subpopulation of stromal cells controls cancer cell homing to the bone marrow. Cancer Res. 2018;78(1):129–42.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ, Gray D, Birrer N, Wong B, Ha G. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 2016;8(363):363ra147.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Hill BS, Pelagalli A, Passaro N, Zannetti A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget. 2017;8(42):73296.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Islam MS, Stemig ME, Takahashi Y, Hui SK. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells. J Radiat Res. 2014;56(2):269–77.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer. 2016;16(6):373.PubMedCrossRefGoogle Scholar
  123. 123.
    KNOSPE WH, BLOM J, CROSBY WH, Davis M. Regeneration of locally irradiated bone marrow: I. dose dependent, long-term changes in the rat, with particular emphasis upon vascular and stromal reaction. Blood. 1966;28(3):398–415.PubMedGoogle Scholar
  124. 124.
    Rebel V, Miller C, Spinelli J, Thomas T, Eaves C, Lansdorp P. Nonlinear effects of radiation dose on donor-cell reconstitution by limited numbers of purified stem cells. Biol Blood Marrow Transplant. 1995;1(1):32–9.PubMedGoogle Scholar
  125. 125.
    McAfee SL, Powell SN, Colby C, Spitzer TR. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy. Int J Radiat Oncol Biol Phys. 2002;53(1):151–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Georgiou KR, Hui SK, Xian CJ. Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy. Am J Stem Cells. 2012;1(3):205.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Yagi M, Arentsen L, Shanley RM, Rosen CJ, Kidder LS, Sharkey LC, Yee D, Koizumi M, Ogawa K, Hui SK. A dual-radioisotope hybrid whole-body micro-positron emission tomography/computed tomography system reveals functional heterogeneity and early local and systemic changes following targeted radiation to the murine caudal skeleton. Calcif Tissue Int. 2014;94(5):544–52.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wilke C, Holtan SG, Sharkey L, DeFor T, Arora M, Premakanthan P, Yohe S, Vagge S, Zhou D, Chakrabarty JLH. Marrow damage and hematopoietic recovery following allogeneic bone marrow transplantation for acute leukemias: effect of radiation dose and conditioning regimen. Radiother Oncol. 2016;118(1):65–71.PubMedCrossRefGoogle Scholar
  129. 129.
    Hui SK, Arentsen L, Sueblinvong T, Brown K, Bolan P, Ghebre RG, Downs L, Shanley R, Hansen KE, Minenko AG. A phase I feasibility study of multi-modality imaging assessing rapid expansion of marrow fat and decreased bone mineral density in cancer patients. Bone. 2015;73:90–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Magome T, Froelich J, Takahashi Y, Arentsen L, Holtan S, Verneris MR, Brown K, Haga A, Nakagawa K, Chakrabarty JLH. Evaluation of functional marrow irradiation based on skeletal marrow composition obtained using dual-energy computed tomography. Int J Radiat Oncol Biol Phys. 2016;96(3):679–87.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kumar B, Orellana M, Brooks J, Madabushi SS, Parra LE, Zuro D, Wang Q, Chen C-C, Hui S. Leukemia cells remodel adipocyte niches and their progenitor functions to generate leukemia favoring niche. Am Soc Hematol. 2018;132:1294.Google Scholar
  132. 132.
    Tomé WA, Fowler JF. On cold spots in tumor subvolumes. Med Phys. 2002;29(7):1590–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Levitt SH, Perez CA, Hui S, Purdy JA. Evolution of computerized radiotherapy in radiation oncology: potential problems and solutions. Int J Radiat Oncol Biol Phys. 2008;70(4):978–86.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Takahashi Y, Vagge S, Agostinelli S, Han E, Matulewicz L, Schubert K, Chityala R, Ratanatharathorn V, Tournel K, Penagaricano JA. Multi-institutional feasibility study of a fast patient localization method in total marrow irradiation with helical tomotherapy: a global health initiative by the international consortium of total marrow irradiation. Int J Radiat Oncol Biol Phys. 2015;91(1):30–8.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Wolf MB, Murray F, Kilk K, Hillengass J, Delorme S, Heiss C, Neben K, Goldschmidt H, Kauczor H-U, Weber M-A. Sensitivity of whole-body CT and MRI versus projection radiography in the detection of osteolyses in patients with monoclonal plasma cell disease. Eur J Radiol. 2014;83(7):1222–30.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Terpos E, Dimopoulos MA, Moulopoulos LA. The role of imaging in the treatment of patients with multiple myeloma in 2016. Am Soc Clin Oncol Educ Book. 2016;36:e407–17.CrossRefGoogle Scholar
  137. 137.
    Moreau P, Attal M, Caillot D, Macro M, Karlin L, Garderet L, Facon T, Benboubker L, Escoffre-Barbe M, Stoppa A-M. Prospective evaluation of magnetic resonance imaging and [18F] fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35(25):2911.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zamagni E, Nanni C, Mancuso K, Tacchetti P, Pezzi A, Pantani L, Zannetti B, Rambaldi I, Brioli A, Rocchi S. PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin Cancer Res. 2015;21(19):4384–90.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Buck AK, Bommer M, Juweid ME, Glatting G, Stilgenbauer S, Mottaghy FM, Schulz M, Kull T, Bunjes D, Möller P. First demonstration of leukemia imaging with the proliferation marker 18F-fluorodeoxythymidine. J Nucl Med. 2008;49(11):1756–62.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Vanderhoek M, Juckett MB, Perlman SB, Nickles RJ, Jeraj R. Early assessment of treatment response in patients with AML using [18 F] FLT PET imaging. Leuk Res. 2011;35(3):310–6.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.PubMedCrossRefGoogle Scholar
  144. 144.
    Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. Cancer: evolution within a lifetime. Annu Rev Genet. 2014;48:215–36.PubMedCrossRefGoogle Scholar
  145. 145.
    Vaux DL. In defense of the somatic mutation theory of cancer. BioEssays. 2011;33(5):341–3.PubMedCrossRefGoogle Scholar
  146. 146.
    Pawlyn C, Morgan GJ. Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer. 2017;17(9):543.PubMedCrossRefGoogle Scholar
  147. 147.
    Zoi K, Cross N. Genomics of myeloproliferative neoplasms. J Clin Oncol. 2017;35(9):947–54.PubMedCrossRefGoogle Scholar
  148. 148.
    Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Radiation OncologyCity of HopeDuarteUSA
  2. 2.Radiation Oncology, UZ Brussels, VUB (Vrije Universiteit Brussel)BrusselsBelgium

Personalised recommendations