Total Marrow Irradiation in Multiple Myeloma

  • Firoozeh SahebiEmail author


The advent of new targeted agents and monoclonal antibodies prior to or after high-dose therapy and stem cell transplantation has improved the outcome of patients with multiple myeloma. However, the disease remains incurable, and relapse is the main cause of treatment failure. The historical radiosensitivity of multiple myeloma cells led to the use of total body irradiation (TBI) as part of the conditioning regimen prior to autologous stem cell transplantation. However, this treatment was associated with higher toxicities as compared to chemotherapy alone in randomized clinical trials. Total marrow irradiation (TMI) delivered by helical tomotherapy allows for delivery of escalating doses of radiation to the marrow space while maintaining lower doses to normal organs. This approach allows augmentation of the antimyeloma effect of irradiation to the sites of disease as a strategy to improve disease control while minimizing exposure to normal organs and subsequent potential immediate and long-term toxicities. We review the use of TMI as a conditioning regimen prior to both autologous and allogenic peripheral stem cell transplantation in patients with multiple myeloma.


Multiple myeloma Total body irradiation Total marrow irradiation Helical tomotherapy Autologous Allogeneic Transplantation Clinical trial 


  1. 1.
    McKenna R, Kuehl W, Grogan T, Harris N, Coupland R. Plasma cell neoplasms. In: Swerdlow SHCE, Harris NH, JAffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 200–13.Google Scholar
  2. 2.
    Kumar SK, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.CrossRefGoogle Scholar
  3. 3.
    Pulte D, Gondos A, Brenner H. Improvement in survival of older adults with multiple myeloma: results of an updated period analysis of SEER data. Oncologist. 2011;16(11):1600–3.CrossRefGoogle Scholar
  4. 4.
    Rajkumar SV, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11(1):29–37.CrossRefGoogle Scholar
  5. 5.
    Cavo M, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet. 2010;376(9758):2075–85.CrossRefGoogle Scholar
  6. 6.
    Harousseau JL, et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. J Clin Oncol. 2010;28(30):4621–9.CrossRefGoogle Scholar
  7. 7.
    San Miguel JF, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359(9):906–17.CrossRefGoogle Scholar
  8. 8.
    Kumar SK, et al. Multiple myeloma, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(2):230–69.CrossRefGoogle Scholar
  9. 9.
    Attal M, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91–7.CrossRefGoogle Scholar
  10. 10.
    Child JA, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med. 2003;348(19):1875–83.CrossRefGoogle Scholar
  11. 11.
    Palumbo A, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905.CrossRefGoogle Scholar
  12. 12.
    Gay F, et al. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: a randomised, multicentre, phase 3 trial. Lancet Oncol. 2015;16(16):1617–29.CrossRefGoogle Scholar
  13. 13.
    McCarthy PL, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770–81.CrossRefGoogle Scholar
  14. 14.
    Attal M, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1782–91.CrossRefGoogle Scholar
  15. 15.
    Jakubowiak AJ, et al. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood. 2012;120(9):1801–9.CrossRefGoogle Scholar
  16. 16.
    Zimmerman TM, et al. Phase II MMRC trial of extended treatment with carfilzomib (CFZ), lenalidomide (LEN), and dexamethasone (DEX) plus autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma (NDMM). J Clin Oncol. 2015;33(15_suppl):8510.CrossRefGoogle Scholar
  17. 17.
    Attal M, et al. Lenalidomide, Bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376(14):1311–20.CrossRefGoogle Scholar
  18. 18.
    Abidi MH, et al. A phase I dose-escalation trial of high-dose melphalan with palifermin for cytoprotection followed by autologous stem cell transplantation for patients with multiple myeloma with normal renal function. Biol Blood Marrow Transplant. 2013;19(1):56–61.CrossRefGoogle Scholar
  19. 19.
    Lahuerta JJ, et al. Busulfan 12 mg/kg plus melphalan 140 mg/m2 versus melphalan 200 mg/m2 as conditioning regimens for autologous transplantation in newly diagnosed multiple myeloma patients included in the PETHEMA/GEM2000 study. Haematologica. 2010;95(11):1913–20.CrossRefGoogle Scholar
  20. 20.
    Salmon SE, et al. Chemotherapy is superior to sequential hemibody irradiation for remission consolidation in multiple myeloma: a southwest oncology group study. J Clin Oncol. 1990;8(9):1575–84.CrossRefGoogle Scholar
  21. 21.
    Hu K, Yahalom J. Radiotherapy in the management of plasma cell tumors. Oncology (Williston Park). 2000;14(1):101–8. 11; discussion 11-2, 15Google Scholar
  22. 22.
    Moreau P, et al. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5.CrossRefGoogle Scholar
  23. 23.
    Takahashi Y, Hui SK. Fast, simple, and informative patient-specific dose verification method for intensity modulated total marrow irradiation with helical tomotherapy. Radiat Oncol. 2014;9:34.CrossRefGoogle Scholar
  24. 24.
    Somlo G, et al. Total marrow irradiation: a new ablative regimen as part of tandem autologous stem cell transplantation for patients with multiple myeloma. Clin Cancer Res. 2011;17(1):174–82.CrossRefGoogle Scholar
  25. 25.
    Somlo G, et al. Total marrow irradiation (TMI) with helical tomotherapy and peripheral blood progenitor cell rescue (PBPC) following high-dose melphalan (Mel) and PBPC as part of tandem autologous transplant (TAT) for patients with multiple myeloma. J Clin Oncol. 2015;33(15):8581.CrossRefGoogle Scholar
  26. 26.
    Patel P, et al. A phase 1 trial of autologous stem cell transplantation conditioned with melphalan 200 mg/m(2) and total marrow irradiation (TMI) in patients with relapsed/refractory multiple myeloma. Leuk Lymphoma. 2018;59(7):1666–71.CrossRefGoogle Scholar
  27. 27.
    Lin SC, Hsieh PY, Shueng PW, Tien HJ, Wang LY, Hsieh CH. Total marrow irradiation as part of autologous stem cell transplantation for Asian patients with multiple myeloma. Biomed Res Int. 2013;2013:321762.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Sahebi F, et al. Late relapses following reduced intensity allogeneic transplantation in patients with multiple myeloma: a long-term follow-up study. Br J Haematol. 2013;160(2):199–206.CrossRefGoogle Scholar
  29. 29.
    Gahrton G, et al. Autologous/reduced-intensity allogeneic stem cell transplantation vs autologous transplantation in multiple myeloma: long-term results of the EBMT-NMAM2000 study. Blood. 2013;121(25):5055–63.CrossRefGoogle Scholar
  30. 30.
    Lokhorst H, et al. International myeloma working group consensus statement regarding the current status of allogeneic stem-cell transplantation for multiple myeloma. J Clin Oncol. 2010;28(29):4521–30.CrossRefGoogle Scholar
  31. 31.
    Rosenthal J, et al. Phase 1/2 trial of total marrow and lymph node irradiation to augment reduced-intensity transplantation for advanced hematologic malignancies. Blood. 2011;117(1):309–15.CrossRefGoogle Scholar
  32. 32.
    Jensen LG, Stiller T, Wong JYC, Palmer J, Stein A, Rosenthal J. Total marrow lymphoid irradiation/Fludarabine/ Melphalan conditioning for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2018;24(2):301–7.CrossRefGoogle Scholar
  33. 33.
    Koreth J, et al. Bortezomib-based graft-versus-host disease prophylaxis in HLA-mismatched unrelated donor transplantation. J Clin Oncol. 2012;30(26):3202–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The Judy and Bernard Briskin Center for Multiple Myeloma Research, City of HopeDuarteUSA
  2. 2.Southern California Permanente Bone Marrow Transplant ProgramPasadenaUSA
  3. 3.Department of Hematology and Hematopoietic Cell TransplantationCity of HopeDuarteUSA

Personalised recommendations