Advertisement

Non-Equilibrium Green’s Function Method for Electronic Transport in Nanostructured Thermoelectric Materials

  • Neophytos NeophytouEmail author
Chapter
  • 21 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Nanostructuring is one of the most promising directions in reaching improved thermoelectric performance as it leads to significant reductions in thermal conductivity. This chapter describes how the thermoelectric power factor can also be evaluated based on quantum mechanical transport simulations.

References

  1. 1.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press (1997)Google Scholar
  2. 2.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press (2005)Google Scholar
  3. 3.
    Datta, S.: Lessons from Nanoelectronics: A New Perspective on Transport. World Scientific Publishing Company (2012)Google Scholar
  4. 4.
  5. 5.
    Koswatta, S.O., Hasan, S., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007)CrossRefGoogle Scholar
  6. 6.
    Liang, G., Neophytou, N., Lundstrom, M.S., Nikonov, D.E.: Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J. Appl. Phys. 102(5), 054307 (2007)CrossRefGoogle Scholar
  7. 7.
    Pomorski, P., Odbadrakh, K., Sagui, C., Roland, C.: Nonequilibrium Green’s function modeling of the quantum transport of molecular electronic devices. Theor. Comput. Chem. 17, 187–204 (2007)CrossRefGoogle Scholar
  8. 8.
    Karamitaheri, H., Pourfath, M., Kosina, H., Neophytou, N.: Low-dimensional phonon transport effects in ultranarrow disordered graphene nanoribbons. Phys. Rev. B 91(16), 165410 (2015)CrossRefGoogle Scholar
  9. 9.
    Thesberg, M., Pourfath, M., Kosina, H., Neophytou, N.: The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices. J. Appl. Phys. 118(22), 224301 (2015)CrossRefGoogle Scholar
  10. 10.
    Foster, S., Thesberg, M., Neophytou, N.: Thermoelectric power factor of nanocomposite materials from two-dimensional quantum transport simulations. Phys. Rev. B 96(19), 195425 (2017)CrossRefGoogle Scholar
  11. 11.
    Vargiamidis, V., Neophytou, N.: Hierarchical nanostructuring approaches for thermoelectric materials with high power factors. Phys. Rev. B 99(4), 045405 (2019)CrossRefGoogle Scholar
  12. 12.
    Sancho, M.L., Sancho, J.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F Met. Phys. 14(5), 1205 (1984)CrossRefGoogle Scholar
  13. 13.
    Lake, R., Klimeck, G., Bowen R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997)CrossRefGoogle Scholar
  14. 14.
    Anantram, M.P., Lundstrom, M., Nikonov, D.: Modeling of nanoscale devices. Proc. IEEE 96, 1511 (2008)CrossRefGoogle Scholar
  15. 15.
    Kim, R., Lundstrom, M.S.: Computational study of the seebeck coefficient of one-dimensional composite nano-structures. J. Appl. Phys. 110, 034511 (2011)CrossRefGoogle Scholar
  16. 16.
    Vargiamidis, V., Thesberg, M., Neophytou, N.: Theoretical model for the Seebeck coefficient in superlattice materials with energy relaxation. J. Appl. Phys. 126(5), 055105 (2019)CrossRefGoogle Scholar
  17. 17.
    Thesberg, M., Kosina, H., Neophytou, N.: On the effectiveness of the thermoelectric energy filtering mechanism in low-dimensional superlattices and nano-composites’. J. Appl. Phys. 120, 234302 (2016)CrossRefGoogle Scholar
  18. 18.
    Neophytou, N., Zianni, X., Kosina, H., Frabboni, S., Lorenzi, B., Narducci, D.: Simultaneous increase in electrical conductivity and seebeck coefficient in highly boron-doped nanocrystalline Si. Nanotechnology 24(20), 205402 (2013)CrossRefGoogle Scholar
  19. 19.
    Kim, R., Lundstrom, M.S.: Computational study of energy filtering effects in one-dimensional composite nano-structures. J. Appl. Phys. 111, 024508 (2012)CrossRefGoogle Scholar
  20. 20.
    Neophytou, N., Foster, S., Vargiamidis, V., Narducci, D.: Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors. Mater. Today Phys. 11, 100159 (2019).  https://doi.org/10.1016/j.mtphys.2019.100159CrossRefGoogle Scholar
  21. 21.
    Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)CrossRefGoogle Scholar
  22. 22.
    de Sousa Oliveira, L., Neophytou, N.: Large-scale molecular dynamics investigation of geometrical features in nanoporous Si. Phys. Rev. B 100(3), 035409 (2019)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations