Monte Carlo Method for Electronic and Phononic Transport in Nanostructured Thermoelectric Materials

  • Neophytos NeophytouEmail author
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Given a certain material, in order to understand electronic transport in its nanostructured or highly disordered forms, one needs to move beyond the simplified analytical models for the scattering rates on structure irregularities that were described in Chap.  2. This Chapter describes the Monte Carlo method for electronic and phononic transport applied to nanostructured materials.


  1. 1.
    Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press (2000)Google Scholar
  2. 2.
    Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation, Computational Microelectronics (1989)Google Scholar
  3. 3.
    Moglestue, C.: Monte Carlo Simulation of Semiconductor Devices. Chapman and Hall (1993)Google Scholar
  4. 4.
    Laux, S.E., Fischetti, M.V., Frank, D.J.: Monte Carlo analysis of semiconductor devices: the DAMOCLES program. IBM J. Res. Dev. 34(4), 466–494 (1990)CrossRefGoogle Scholar
  5. 5.
    Foster, S.: Ph.D. thesis (2019) University of WarwickGoogle Scholar
  6. 6.
    Aksamija, Z., Knezevic, I.: Lattice thermal transport in large-area polycrystalline graphene. Phys. Rev. B 90(3), 035419 (2014)CrossRefGoogle Scholar
  7. 7.
    Zuverink, A.: Surface roughness scattering of electrons in bulk MOSFETS. Doctoral dissertation (2015)Google Scholar
  8. 8.
    Graebner, J.E., Reiss, M.E., Seibles, L., Hartnett, T.M., Miller, R.P., Robinson, C.J.: Phonon scattering in chemical-vapor-deposited diamond. Phys. Rev. B 50(6), 3702 (1994)CrossRefGoogle Scholar
  9. 9.
    Aksamija, Z., Knezevic, I.: Thermal transport in graphene nanoribbons supported on SiO2. Phys. Rev. B 86, 165426 (2012)CrossRefGoogle Scholar
  10. 10.
    Soffer, S.B.: Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38(4), 1710 (1967)CrossRefGoogle Scholar
  11. 11.
    Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123(4), 749–759 (2001)CrossRefGoogle Scholar
  12. 12.
    Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72(6), 064305 (2005)CrossRefGoogle Scholar
  13. 13.
    Chakraborty, D., Foster, S., Neophytou, N.: Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures. Phys. Rev. B 98(11), 115435 (2018)CrossRefGoogle Scholar
  14. 14.
    Neophytou, N., Kosina, H.: Optimizing thermoelectric power factor by means of a potential barrier. J. Appl. Phys. 114(4), 044315 (2013)CrossRefGoogle Scholar
  15. 15.
    Thesberg, M., Pourfath, M., Neophytou, N., Kosina, H.: The fragility of thermoelectric power factor in cross-plane superlattices in the presence of non-idealities: A quantum transport simulation approach. J. Electron. Mater. 45 (3), 1584 (2015)CrossRefGoogle Scholar
  16. 16.
    Thesberg, M., Pourfath, M., Kosina, H., Neophytou, N.: The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices. J. Appl. Phys. 118, 224301 (2015)CrossRefGoogle Scholar
  17. 17.
    Pop, E., Dutton, R.W., Goodson, K.E.: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96(9), 4998–5005 (2004)CrossRefGoogle Scholar
  18. 18.
    Narumanchi, S.V., Murthy, J.Y., Amon, C.H.: Comparison of different phonon transport models for predicting heat conduction. J. Heat Transf. 127, 713 (2005)CrossRefGoogle Scholar
  19. 19.
    Pop, E., Goodson, K.E.: Thermal phenomena in nanoscale transistors. J. Electron. Packag. 128(2), 102–108 (2006)CrossRefGoogle Scholar
  20. 20.
    Hao, Q., Chen, G., Jeng, M.S.: Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 106(11), 114321 (2009)CrossRefGoogle Scholar
  21. 21.
    Mittal, A., Mazumder, S.: Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J. Heat Transf. 132(5), 052402 (2010)CrossRefGoogle Scholar
  22. 22.
    Wolf, S., Neophytou, N., Kosina, H.: Thermal conductivity of silicon nanomeshes: effects of porosity and roughness. J. Appl. Phys. 115(20), 204306 (2014)CrossRefGoogle Scholar
  23. 23.
    Wolf, S., Neophytou, N., Stanojevic, Z., Kosina, H.: Monte Carlo simulations of thermal conductivity in nanoporous Si membranes. J. Electron. Mater. 43(10), 3870–3875 (2014)CrossRefGoogle Scholar
  24. 24.
    Jeong, C., Datta, S., Lundstrom, M.: Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J. Appl. Phys. 111, 093708 (2012)CrossRefGoogle Scholar
  25. 25.
    Klemens, P.G.: The thermal conductivity of dielectric solids at low temperatures. Proc. R. Soc. London, Ser. A 208, 108 (1951)CrossRefGoogle Scholar
  26. 26.
    Srivastava, G.: The Physics of Phonons. Adam Hilger, Bristol, UK (1990)Google Scholar
  27. 27.
    Han, Y.-J., Klemens, P.G.: Anharmonic thermal resistivity of dielectric crystals at low temperatures. Phys. Rev. B 48, 6033 (1993)CrossRefGoogle Scholar
  28. 28.
    Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), 2461 (1963)CrossRefGoogle Scholar
  29. 29.
    Chakraborty, D., de Sousa Oliveira, L., Neophytou, N.: Enhanced phonon boundary scattering at high temperatures in hierarchically disordered nanostructures. J. Electron. Mater. 48(4), 1909–1916 (2019)CrossRefGoogle Scholar
  30. 30.
    Ramayya, E.B., Maurer, L.N., Davoody, A.H., Knezevic, I.: Thermoelectric properties of ultrathin silicon nanowires. Phys. Rev. B 86(11), 115328 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations