Advertisement

Blockchain Frameworks

  • Mohammad Tabrez QuasimEmail author
  • Mohammad Ayoub Khan
  • Fahad Algarni
  • Abdullah Alharthy
  • Goram Mufareh M. Alshmrani
Chapter
  • 14 Downloads
Part of the Studies in Big Data book series (SBD, volume 71)

Abstract

The blockchain is fascinating in many areas such as finance, healthcare, governance, security and many more. The underlying principle of the blockchain is based on distributed ledgers that solves many existing problems. Every blockchain framework has a different objective and application. There are many important criteria that must be considered during the selection of blockchain framework. Every blockchain framework and development platform has different pros and cons. In this chapter we present some of the leading enterprise frameworks for implementing blockchain solution. The enterprise support, pros and cons and transaction model are few important parameters to select the framework. In this chapter we present detailed investigation on blockchain frameworks that are publicly available.

Keywords

Blockchain PoW POI Evaluation framework Ethereum Bitcoin Corda IOTA EOS XRP Waves Quorum NEM XEM 

References

  1. 1.
    Raikwar, M., Mazumdar, S., Ruj, S., Sen Gupta, S., Chattopadhyay, A., Lam, K.: A blockchain framework for insurance processes. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–4. Paris (2018).  https://doi.org/10.1109/ntms.2018.8328731
  2. 2.
    Puthal, D., Malik, N., Mohanty, S.P., Kougianos, E., Yang, C.: The blockchain as a decentralized security framework [Future Directions]. IEEE Consum. Electron. Mag. 7(2), 18–21 (2018).  https://doi.org/10.1109/mce.2017.2776459
  3. 3.
    Xu, Y., Wu, M., Lv, Y., Zhai, S.: Research on application of block chain in distributed energy transaction. In: 7th IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 957–960. Chongqing (2017).  https://doi.org/10.1109/itoec.2017.8122495
  4. 4.
  5. 5.
    Pinna, A., Ibba, S., Baralla, G., Tonelli, R., Marchesi, M.: A massive analysis of ethereum smart contracts empirical study and code metrics. IEEE Access 7, 78194–78213 (2019).  https://doi.org/10.1109/access.2019.2921936
  6. 6.
    Luo, X., Cai, W., Wang, Z., Li, X., Victor Leung, C.M.: A payment channel based hybrid decentralized ethereum token exchange. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 48–49. Seoul, Korea  (2019).  https://doi.org/10.1109/bloc.2019.8751454
  7. 7.
    di Angelo, M., Salzer, G.: A survey of tools for analysing ethereum smart contracts. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON), pp. 69–78. Newark, CA, USA (2019).  https://doi.org/10.1109/dappcon.2019.00018
  8. 8.
    Augusto, L., Costa, R., Ferreira, J., Jardim-Gonçalves, R.: An application of ethereum smart contracts and IoT to logistics. In: 2019 International Young Engineers Forum (YEF-ECE), pp. 1–7. Costa da Caparica, Portugal (2019).  https://doi.org/10.1109/yef-ece.2019.8740823
  9. 9.
    Aung, Y.N., Tantidham, T.: Review of ethereum: smart home case study. In: 2017 2nd International Conference on Information Technology (INCIT), pp. 1–4. Nakhonpathom (2017).  https://doi.org/10.1109/incit.2017.8257877
  10. 10.
    Pierro, G.A., Rocha, H.: The influence factors on ethereum transaction fees. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), pp. 24–31. Montreal, QC, Canada (2019).  https://doi.org/10.1109/wetseb.2019.00010
  11. 11.
    Tantidham, T., Aung, Y.N.: Emergency service for smart home System using ethereum blockchain: system and architecture. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 888–893. Kyoto, Japan (2019).  https://doi.org/10.1109/percomw.2019.8730816
  12. 12.
    Harris, C.G.: The risks and challenges of implementing ethereum smart contracts. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 104–107. Seoul, Korea (South) (2019).  https://doi.org/10.1109/bloc.2019.8751493
  13. 13.
    Dika, A., Nowostawski, M.: Security vulnerabilities in ethereum smart contracts. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 955–962. Halifax, NS, Canada (2018).  https://doi.org/10.1109/cybermatics_2018.2018.00182
  14. 14.
    Attia, O., Khoufi, I., Laouiti, A., Adjih, C.: An Iot-blockchain architecture based on hyperledger framework for healthcare monitoring application. In: 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. CANARY ISLANDS, Spain (2019).  https://doi.org/10.1109/ntms.2019.8763849
  15. 15.
    Goranović, A., Meisel, M., Wilker, S., Sauter, T.: Hyperledger fabric smart grid communication testbed on raspberry PI ARM architecture. In: 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), pp. 1–4. Sundsvall, Sweden (2019).  https://doi.org/10.1109/wfcs.2019.8758000
  16. 16.
    Nguyen, T.S.L., Jourjon, G., Potop-Butucaru, M., Thai, K.L.: Impact of network delays on hyperledger fabric. In: IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 222–227. Paris, France, (2019)Google Scholar
  17. 17.
    Ampel, B., Patton, M., Chen, H.: Performance modeling of hyperledger sawtooth blockchain. In: 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 59–61. Shenzhen, China (2019).  https://doi.org/10.1109/isi.2019.8823238
  18. 18.
    Thakkar, P., Nathan, S., Viswanathan, B. Performance benchmarking and optimizing hyperledger fabric blockchain platform. In: IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 264–276. Milwaukee, WI (2018).  https://doi.org/10.1109/mascots.2018.00034
  19. 19.
    Ampel, B., Patton, M., Chen, H.: Performance modeling of hyperledger sawtooth blockchain. In: 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 59–61. Shenzhen, China (2019).  https://doi.org/10.1109/isi.2019.8823238
  20. 20.
    Lin, Y., Wu, P., Hsu, C., Tu, I., Liao, S.: An evaluation of bitcoin address classification based on transaction history summarization. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310. Seoul, Korea (South) (2019).  https://doi.org/10.1109/bloc.2019.8751410
  21. 21.
    Qin, K., Hadass, H., Gervais, A., Reardon, J.: Applying private information retrieval to lightweight bitcoin clients. In: Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 60–72. Rotkreuz, Switzerland (2019).  https://doi.org/10.1109/cvcbt.2019.00012
  22. 22.
    Grundmann, M., Leinweber, M., Hartenstein, H.: Banklaves: concept for a trustworthy decentralized payment service for bitcoin. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 268–276. Seoul, Korea (South (2019).  https://doi.org/10.1109/bloc.2019.8751394
  23. 23.
    Mittal, A., Dhiman, V., Singh, A., Prakash, C.: Short-term bitcoin price fluctuation prediction using social media and web search data. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–6. Noida, India (2019).  https://doi.org/10.1109/ic3.2019.8844899
  24. 24.
    Biryukov, A., Tikhomirov, S.: Transaction clustering using network traffic analysis for bitcoin and derived blockchains. In: IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 204–209. Paris, France (2019).  https://doi.org/10.1109/infcomw.2019.8845213
  25. 25.
    Chadha, G.K., Singh, A.: Bitcoin block-chain mining. In: 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 152–157. Noida, India (2019).  https://doi.org/10.1109/confluence.2019.8776961
  26. 26.
    Erfani, S., Ahmadi, M.: Bitcoin security reference model: an implementation platform. In: 2019 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–5. Iasi, Romania (2019).  https://doi.org/10.1109/isscs.2019.8801796
  27. 27.
    Wu, Y., Luo, A., Xu, D.: Forensic analysis of bitcoin transactions. In: 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 167–169. Shenzhen China (2019).  https://doi.org/10.1109/isi.2019.8823498
  28. 28.
  29. 29.
    Richard Gendal Brown. The corda platform: an introduction (2018). https://www.corda.net/content/corda-platform-whitepaper.pdf. Accessed 1 Sep 2019
  30. 30.
    Sing, N.: Top 7 benefits of EOS blockchain (2018). https://101blockchains.com/top-7-benefits-of-eos-blockchain/. Accessed 1 Sep 2019
  31. 31.
    Lamtzidis, O., Gialelis, J.: An IOTA based distributed sensor node system. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. Abu Dhabi, United Arab Emirates (2018).  https://doi.org/10.1109/glocomw.2018.8644153
  32. 32.
    Dasalukunte, D., Mehmood, S., Öwall, V.: Complexity analysis of IOTA filter architectures in faster-than-Nyquist multicarrier systems. In: 2011 NORCHIP, pp. 1–4. Lund (2011).  https://doi.org/10.1109/norchp.2011.6126704
  33. 33.
    Shabandri, B., Maheshwari, P.: Enhancing IoT security and privacy using distributed ledgers with IOTA and the tangle. In: 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 1069–1075. Noida, India (2019).  https://doi.org/10.1109/spin.2019.8711591
  34. 34.
    Glencross, M., Howard, T., Pettifer, S.: Iota: an approach to physically-based modelling in virtual environments. In: Proceedings IEEE Virtual Reality 2001, pp. 287–288. Yokohama, Japan (2001).  https://doi.org/10.1109/vr.2001.913800
  35. 35.
    Tarasenko, E.: Best blockchain frameworks you should know about. https://merehead.com/blog/blockchain-frameworks-you-should-know-about/ Accessed 2 July 2019
  36. 36.
    Andriopoulou, F., Orphanoudakis, T., Dagiuklas, T.: IoTA: IoT automated SIP-based emergency call triggering system for general eHealth purposes. In: 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 362–369. Rome (2017).  https://doi.org/10.1109/wimob.2017.8115830

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Tabrez Quasim
    • 1
    Email author
  • Mohammad Ayoub Khan
    • 1
  • Fahad Algarni
    • 1
  • Abdullah Alharthy
    • 1
  • Goram Mufareh M. Alshmrani
    • 1
  1. 1.College of Computing and Information TechnologyUniversity of BishaBishaSaudi Arabia

Personalised recommendations