Practical Privacy Measures in Blockchains

  • Omar S. SalehEmail author
  • Osman Ghazali
  • Norbik Bashah Idris
Part of the Studies in Big Data book series (SBD, volume 71)


The Blockchain Technology has recently been a hot topic proposed in many industries such as Financial, Healthcare, Business, E-Government, Education, etc. The Blockchain can simply be defined as a distributed database or public ledger that contains records of all digital transactions/events that have transpired amongst the parties involved. The technology itself is comprised of other more fundamental knowledge namely: cryptography, distributed system, network and game theory. Thus at the more basic level, the blockchain components include functions such as hash, asymmetric cryptography, digital signatures, peer-to-peer network protocols and some elements of a “proof of correctness/work” resulting from a game-like setup. Against a backdrop of such a mixture of functions, “privacy” has emerged to be one of the new challenges in any Blockchain implementation. This research aims to investigate the techniques that can be used to successfully manage privacy in the blockchains. The work has identified the requirements and analyzed the techniques that can be used. Finally, the work was also extended to an analysis on the performance evaluation of blockchains in managing privacy albeit focusing on a specific blockchain—the Hyperledger fabric platform.


DLT (Distributed Ledger Technology) Blockchain Cryptography Hash Privacy Zero-knowledge proofs Peer-to-peer Hyperledger 



Authors would like to sincerely thank Universiti Utara Malaysia (UUM), International Islamic University Malaysia (IIUM), Malaysia and Ministry of Higher Education, Iraq for supporting this research.


  1. 1.
     Grech, A. and Camilleri, A. F.: Blockchain in Education. In: Inamorato dos Santos, A. (ed.) EUR 28778 EN (2017).
  2. 2.
    Ackerman, A.,Chang, A., Diakun-Thibault, N., Forni, L., Landa, F., Mayo, J., van Riezen, R.: Blockchain and Health IT: Algorithms, Privacy and Data (August 8, 2016). Project PharmOrchard of MIT’s Experimental Learning “MIT FinTech: Future Commerce.”, White Paper August 2016. Available at SSRN:
  3. 3.
    Duan, Z, Mao, H., Chen, Z., Bai, X., Hu, K., Talpin, J.-P.: Formal modeling and verification of blockchain system, vol. 86, pp. 231–235 (2018)Google Scholar
  4. 4.
    Wu, J., Tran, N.K.: Application of blockchain technology in sustainable energy systems: an overview. Sustain 10(9), 1–22 (2018)Google Scholar
  5. 5.
    Cui, G., Shi, K., Qin, Y., Liu, L., Qi, B., Li, B.: Application of block chain in multi-level demand response reliable mechanism. In: 2017 3rd International Conference on Information Management (ICIM), pp. 337–341 (2017)Google Scholar
  6. 6.
    Fukumitsu, M., Hasegawa, S., Iwazaki, J., Sakai, M., Takahashi, D.: A proposal of a secure P2P-type storage scheme by using the secret sharing and the blockchain. In: Proceedings of the International Conference on Advanced Information Networking and Applications (AINA), pp. 803–810 (2017)Google Scholar
  7. 7.
    Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation systems. In: IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 2663–2668 (2016)Google Scholar
  8. 8.
    Zheng, Z., Xie, S., Dai, H.N., Wang, H.: Blockchain challenges and opportunities: a survey. Work Pap.–2016, December 2016Google Scholar
  9. 9.
    Baliga, A.: Understanding blockchain consensus models. Whitepaper, April, pp. 1–14 (2017)Google Scholar
  10. 10.
    Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: architecture, consensus, and future trends. In: Proceeding of 2017 IEEE 6th International Congress on Big Data (BigData Congress), pp. 557–564 (2017)Google Scholar
  11. 11.
    Prashanth Joshi, A., Han, M., Wang, Y.: A survey on security and privacy issues of blockchain technology. Math. Found. Comput 1(2), 121–147 (2018)Google Scholar
  12. 12.
    Le, T., Mutka, M.W.: Capchain: a privacy preserving access control framework based on blockchain for pervasive environments. In: Proceedings of 2018 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 57–64 (2018)Google Scholar
  13. 13.
    Lin, I.-C., Liao, T.-C.: A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 1919(55), 653–659 (2017)Google Scholar
  14. 14.
    Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.-L.: Blockbench: a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Management of Data. ACM (2017)Google Scholar
  15. 15.
    Fabian, B., Ermakova, T., Krah, J., Lando, E., Ahrary, N.: Adoption of security and privacy measures in bitcoin–stated and actual behavior (2018). Available at SSRN:
  16. 16.
    Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. 126, 45–58 (2019)CrossRefGoogle Scholar
  17. 17.
    Duan, B., Zhong, Y., Liu, D.: Education application of blockchain technology: learning outcome and meta-diploma. In: Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS), December 2017, pp. 814–817 (2018)Google Scholar
  18. 18.
    Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., ... & Song, D.: Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 185–200. IEEE (2019, June)Google Scholar
  19. 19.
    Axon, L., Goldsmith, M., Creese, S.: Privacy requirements in cybersecurity applications of blockchain, vol. 111, 1st edn. Elsevier (2018)Google Scholar
  20. 20.
    Ruffing, T., Moreno-sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin—bookmetrix analysis. In: European Symposium on Research in Computer Security (ESORICS), vol. 8713, pp. 1–15 (2014)Google Scholar
  21. 21.
    Chen, J., Yao, S., Yuan, Q., He, K., Ji, S., Du, R.: CertChain: public and efficient certificate audit based on blockchain for TLS connections. In: Proceedings of the IEEE INFOCOM, April 2018, pp. 2060–2068 (2018)Google Scholar
  22. 22.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, p. 9. Www.Bitcoin.Org (2008)
  23. 23.
    Turkanovic, M., Holbl, M., Kosic, K., Hericko, M., Kamisalic, A.: EduCTX: a blockchain-based higher education credit platform. IEEE Access 6, 1–20 (2018)Google Scholar
  24. 24.
    Gervais, A., Karame, G.O., Wüst, K., Ritzdorf, H.: On the security and performance of proof of work blockchains Vasileios Glykantzis Srdjaň Capkun. (2017)Google Scholar
  25. 25.
    Garay, J.A.: The bitcoin backbone protocol : analysis and applications the bitcoin backbone protocol : analysis and applications, June 2017, pp. 1–44 (2015)Google Scholar
  26. 26.
    Yang, D., Gavigan, J., Hearn, Z.W.: Survey of confidentiality and privacy preserving technologies for blockchains, pp. 1–32 (2016)Google Scholar
  27. 27.
    Stuart, P.: Confidentiality in Private Blockchain (August 8, 2016). Project “Kadena: Kuro - Private Blockchain.”, White Paper August 2016. Available at SSRN:
  28. 28.
    Chang, P., Yang, C., Yang, C., Hwang, M.: An academic transcript system embedded with blockchains (2018)Google Scholar
  29. 29.
    Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Europe and MENA Cooperation Advances in Information and Communication Technologies, vol. 520, pp. 523–533. Springer, Cham (2017)Google Scholar
  30. 30.
    Ikeda, K.: Security and privacy of blockchain and quantum computation, 1st ed., vol. 111. Elsevier (2018)Google Scholar
  31. 31.
    Bhowmik, D., Feng, T.: The multimedia blockchain: a distributed and tamper-proof media transaction framework. In: International Conference on Digital Signal Processing (DSP), 2017 August, November 2017Google Scholar
  32. 32.
    Fan, K., Ren, Y., Wang, Y., Li, H., Yang, Y.: Blockchain-based efficient privacy preserving and data sharing scheme of content-centric network in 5G. IET Commun. 12(5), 527–532 (2018)CrossRefGoogle Scholar
  33. 33.
    Colloquium, J.N., Zrt, B.E.: Blockchain: solving the privacy and research availability tradeoff for EHR data. In: IEEE 30th Jubilee Neumann Colloquium, pp. 135–140 (2017)Google Scholar
  34. 34.
    Ali, A., Afzal, M.M.: Confidentiality in blockchain. Int. J. Eng. Sci. Invent. 7(1), 50–52 (2018)Google Scholar
  35. 35.
    Wang, R., He, J., Liu, C., Li, Q., Tsai, W.T., Deng, E.: A privacy-aware PKI system based on permissioned blockchains. In: Proceedings of IEEE International Conference on Software Engineering and Service Science (ICSESS) November 2018, pp. 928–931 (2019)Google Scholar
  36. 36.
    Chen, Y., Xie, H., Lv, K., Wei, S., Hu, C.: DEPLEST: a blockchain-based privacy-preserving distributed database toward user behaviors in social networks. Inf. Sci. (NY) 501, 100–117 (2019)CrossRefGoogle Scholar
  37. 37.
    Casino, F., Dasaklis, T.K., Patsakis, C.: A systematic literature review of blockchain-based applications: current status, classification and open issues. Telematics Inform 36, 55–81 (2018)Google Scholar
  38. 38.
    Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of used cryptography in blockchain (2019)Google Scholar
  39. 39.
    Chaum, D.: Untraceable electronic mail, return addresses and digital pseudonyms. In Secure Electronic Voting, pp. 211–219. Springer, Boston, MA (2003)CrossRefGoogle Scholar
  40. 40.
    Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain, 1(1) (2019)Google Scholar
  41. 41.
    Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J. A., & Felten, E. W. (2014, March). Mixcoin: Anonymity for Bitcoin with accountable mixes. In International Conference on Financial Cryptography and Data Security, pp. 486–504. Springer, Berlin, HeidelbergGoogle Scholar
  42. 42.
    Chaum, D., Van Heyst, E.: Group signatures. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 547, No. iii, pp. 257–265. LNCS (1991)Google Scholar
  43. 43.
    Wood, G., et al.: How to leak a secret. J. Br. Blockchain Assoc., vol. 2018, November 25, 2016, p. Github site to create pdf, 2016Google Scholar
  44. 44.
    Van Saberhagen, N.: CryptoNote v 2.0. Self-published, pp. 1–20 (2013)Google Scholar
  45. 45.
    Logarithms, D.: A public key cryptosystem and a signature based on discrete logarithms, vol. I, pp. 10–18 (1976)Google Scholar
  46. 46.
    Abidin, A.S.Z., Yusuff, R.M., Bakar, N.A., Awi, M.A., Zulkifli, N., Muslimen, R.: Public-key cryptosystems based on composite degree residuosity classes. In: Lecture Notes in Electrical Engineering (LNEE), vol. 130, pp. 285–299 (2013)Google Scholar
  47. 47.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption BT. In: Advances in Cryptology (EUROCRYPT 2005), vol. 3494, Chapter 27, p. 557 (2005)Google Scholar
  48. 48.
    Chase, M.: Multi-authority attribute based encryption. In: Proceedings of the 4th Conference Theory Cryptography, vol. 4392, pp. 515–534 (2007)Google Scholar
  49. 49.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption, vol. 2, No. subaward 641, pp. 568–588 (2011)Google Scholar
  50. 50.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8043, PART 2, pp. 479–499. LNCS (2013)Google Scholar
  51. 51.
    Bogetoft, P., et al: Secure multiparty computation goes live. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5628, pp. 325–343. LNCS (2009)Google Scholar
  52. 52.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: Secure multiparty computations on bitcoin. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 443–458 (2014)Google Scholar
  53. 53.
    Srichaiyo, T., Hjertén, S.: Enigma: decentralized computation platform with guaranteed privacy. J. Liq. Chromatogr 12(5), 809–825 (2015)CrossRefGoogle Scholar
  54. 54.
    Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on Hyperledger fabric with secure multiparty computation. IBM J. Res. Dev. 63(2), 1–8 (2019)Google Scholar
  55. 55.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (2005)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Essaf, F.: Privacy protection issues in blockchain technology, pp. 124–131 (2019)Google Scholar
  57. 57.
    Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis of private blockchain platforms in varying workloads. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE (July, 2017)Google Scholar
  58. 58.
    Ma, C., Kong, X., Lan, Q., Zhou, Z.: The privacy protection mechanism of Hyperledger fabric and its application in supply chain finance. Cybersecurity 2(1), 15 (2019)Google Scholar
  59. 59.
    Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, No. 1. ACM (2018)Google Scholar
  60. 60.
    Vukolić, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts (BCC), pp. 3–7 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Omar S. Saleh
    • 2
    • 1
    Email author
  • Osman Ghazali
    • 2
  • Norbik Bashah Idris
    • 3
  1. 1.Studies, Planning and Follow-Up DirectorateMinistry of Higher Education and Scientific ResearchBaghdadIraq
  2. 2.School of ComputingUniversity Utara MalaysiaKedahMalaysia
  3. 3.Kulliyyah of Information and Communication Technology, International Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations